prepareSGP
, SGP data analysis, analyzeSGP
,
data combining, combineSGP
, and data summarization, summarizeSGP
. Calculating and using
student growth percentiles is as easy as ABC.abcSGP(sgp_object,
state,
steps=c("prepareSGP", "analyzeSGP", "combineSGP", "summarizeSGP", "reportSGP"),
years,
content_areas,
grades,
sgp.percentiles=TRUE,
sgp.projections=TRUE,
sgp.projections.lagged=TRUE,
simulate.sgps=TRUE,
save.intermediate.results=FALSE,
sgp.summaries=list(MEDIAN_SGP="median_na(SGP)",
MEDIAN_SGP_TARGET="median_na(SGP_TARGET)",
PERCENT_CATCHING_UP_KEEPING_UP=
"percent_in_category(CATCH_UP_KEEP_UP_STATUS, list(c('Catch Up: Yes', 'Keep Up: Yes')), list(c('Catch Up: Yes', 'Catch Up: No', 'Keep Up: Yes', 'Keep Up: No')))",
MEDIAN_SGP_COUNT="num_non_missing(SGP)",
PERCENT_AT_ABOVE_PROFICIENT="percent_in_category(ACHIEVEMENT_LEVEL, list(c('Proficient', 'Advanced')), list(c('Unsatisfactory', 'Partially Proficient', 'Proficient', 'Advanced')))",
PERCENT_AT_ABOVE_PROFICIENT_COUNT="num_non_missing(ACHIEVEMENT_LEVEL)"),
summary.groups=list(institution=c("STATE", "DISTRICT_NUMBER", "SCHOOL_NUMBER"),
content="CONTENT_AREA",
time="YEAR",
institution_level="GRADE",
demographic=c("GENDER", "ETHNICITY", "FREE_REDUCED_LUNCH_STATUS", "ELL_STATUS", "IEP_STATUS", "GIFTED_AND_TALENTED_PROGRAM_STATUS", "CATCH_UP_KEEP_UP_STATUS_INITIAL"),
institution_inclusion=list(STATE="STATE_ENROLLMENT_STATUS", DISTRICT_NUMBER="DISTRICT_ENROLLMENT_STATUS", SCHOOL_NUMBER="SCHOOL_ENROLLMENT_STATUS")),
confidence.interval.groups=list(TYPE="Bootstrap",
VARIABLES=c("SGP"),
QUANTILES=c(0.025, 0.975),
GROUPS=list(institution="SCHOOL_NUMBER",
content="CONTENT_AREA",
time="YEAR",
institution_level= NULL,
demographic=NULL,
institution_inclusion=list(STATE=NULL, DISTRICT_NUMBER=NULL, SCHOOL_NUMBER="SCHOOL_ENROLLMENT_STATUS"))))
sgpData_LONG
for an exemplar.prepareSGP
, analyzeSGP
, combineSGP
,
abcSGP
be saved after each of prepareSGP
, analyzeSGP
,
combineSGP
summary.group
argument.institution
, content
, time
, institution_level
,
demographic
, and institution_inclusion
. Summaries gensummary.groups
argument indicating which groups to provide confidence intervals for. See documentation for summarizeSGP
and
Student
slot as a data.table keyed using VALID_CASE
, CONTENT_AREA
,
YEAR
, ID
, SGP results including student growth percentile and student growth projections/trajectories in the SGP slot, and summary results in the
Summary slot.sgpData_LONG
, prepareSGP
, analyzeSGP
, combineSGP
, summarizeSGP
,
studentGrowthPercentiles
, and studentGrowthProjections
DEMO_Data <- abcSGP(sgp_object=sgpData_LONG, state="DEMO")
Run the code above in your browser using DataLab