prepareSGP, SGP data analysis, analyzeSGP,
data combining, combineSGP, data summarization, summarizeSGP, data visualization visualizeSGP and data output
outputSGP.abcSGP(sgp_object,
state=NULL,
steps=c("prepareSGP", "analyzeSGP", "combineSGP", "summarizeSGP", "visualizeSGP", "outputSGP"),
years=NULL,
content_areas=NULL,
grades=NULL,
prepareSGP.var.names=NULL,
sgp.percentiles=TRUE,
sgp.projections=TRUE,
sgp.projections.lagged=TRUE,
sgp.percentiles.baseline=TRUE,
sgp.projections.baseline=TRUE,
sgp.projections.lagged.baseline=TRUE,
sgp.use.my.coefficient.matrices=NULL,
simulate.sgps=TRUE,
calculate.simex=NULL,
parallel.config=NULL,
save.intermediate.results=FALSE,
save.old.summaries=FALSE,
sgPlot.demo.report=FALSE,
sgp.summaries=NULL,
summary.groups=NULL,
data_supplementary=NULL,
confidence.interval.groups=NULL,
plot.types=c("bubblePlot", "studentGrowthPlot", "growthAchievementPlot"),
verbose.output=FALSE)sgpData_LONG for an exemplar. NOTE: Data preparation must be meticulous to utilize this enhanced functionality.prepareSGP, analyzeSGP, combineSGP, prepareSGP for more details. Defaults to NULL.FabcSGP be saved after each of prepareSGP, analyzeSGP,
combineSGPsummarizeSGP should save existing summaries in the @Summary slsummary.group argument. Default is NULL allowing the summarizeSGP
function to produce the list of summaries institution, content, time, institution_type,
institution_level, demographic, and institutisummarizeSGP. See sgpData_INSTRUCTOR_NUMBERsummary.groups argument indicating which groups to provide confidence intervals for.
See documentation for summarizeSGP for more detail.visualizeSGP indicating the types of plots to produce. Currently supported plots include bubblePlots,
Student slot as a data.table keyed using VALID_CASE, CONTENT_AREA,
YEAR, ID, SGP results including student growth percentile and student growth projections/trajectories in the SGP slot, and summary results in the
Summary slot.prepareSGP, analyzeSGP, combineSGP, summarizeSGP,
studentGrowthPercentiles, and studentGrowthProjections## Runs all 5 steps
Demonstration_SGP <- abcSGP(sgp_object=sgpData_LONG, state="DEMO")
## Or letting the function detect the state
Demonstration_SGP <- sgpData_LONG
Demonstration_SGP <- abcSGP(Demonstration_SGP)
###
### Example uses of the parallel.config argument
###
Demonstration_SGP <- sgpData_LONG
Demonstration_SGP <- abcSGP(Demonstration_SGP,
parallel.config=list(
BACKEND="PARALLEL", TYPE="SOCK",
WORKERS=list(
PERCENTILES=8, BASELINE_PERCENTILES=8, PROJECTIONS=7, LAGGED_PROJECTIONS=6,
SUMMARY=8,
GA_PLOTS=8, SG_PLOTS=8)
)
)Run the code above in your browser using DataLab