prepareSGP, SGP data analysis, analyzeSGP,
data combining, combineSGP, data summary, summarizeSGP, data visualization visualizeSGP and data output
outputSGP.abcSGP(sgp_object,
state=NULL,
steps=c("prepareSGP", "analyzeSGP", "combineSGP",
"summarizeSGP", "visualizeSGP", "outputSGP"),
years=NULL,
content_areas=NULL,
grades=NULL,
prepareSGP.var.names=NULL,
sgp.percentiles=TRUE,
sgp.projections=TRUE,
sgp.projections.lagged=TRUE,
sgp.percentiles.baseline=TRUE,
sgp.projections.baseline=TRUE,
sgp.projections.lagged.baseline=TRUE,
sgp.use.my.coefficient.matrices=NULL,
sgp.minimum.default.panel.years=NULL,
sgp.target.scale.scores=FALSE,
simulate.sgps=TRUE,
calculate.simex=NULL,
calculate.simex.baseline=NULL,
parallel.config=NULL,
save.intermediate.results=FALSE,
save.old.summaries=FALSE,
sgPlot.demo.report=FALSE,
sgp.config=NULL,
sgp.summaries=NULL,
summary.groups=NULL,
data_supplementary=NULL,
confidence.interval.groups=NULL,
plot.types=c("bubblePlot", "studentGrowthPlot", "growthAchievementPlot"),
verbose.output=FALSE)sgpData_LONG for an exemplar. By including the name of the state in the object name (e.g., Idaho_SGP), the function
will detect what state is associaprepareSGP, analyzeSGP, combineSGP, prepareSGP for more details. Defaults to NULL.combineSGP run. Defaults to FALSE.FabcSGP be saved after each of prepareSGP, analyzeSGP,
combineSGP@Summary slot before creating new summaries)
indicating whether the call to summarizeSGP should save existing summaries in thanalyzeSGP and combineSGP for user specified SGP analyses. See analyzeSGP dsummary.group argument. Default is NULL allowing the summarizeSGP
function to produce the list of summaries institution, content, time, institution_type,
institution_level, demographic, and institutisummarizeSGP. See sgpData_INSTRUCTOR_NUMsummary.groups argument indicating which groups to provide confidence intervals for.
See documentation for summarizeSGP for more detail.visualizeSGP indicating the types of plots to produce. Currently supported plots include bubblePlots,
@Data slot as a data.table keyed using VALID_CASE, CONTENT_AREA,
YEAR, ID, SGP results including student growth percentile and student growth projections/trajectories in the SGP slot, and summary results in the
@Summary slot.prepareSGP, analyzeSGP, combineSGP, summarizeSGP,
studentGrowthPercentiles, and studentGrowthProjections## Runs all 5 steps
Demonstration_SGP <- abcSGP(sgp_object=sgpData_LONG, state="DEMO")
## Or letting the function detect the state.
Demonstration_SGP <- abcSGP(sgpData_LONG)
###
### Example uses of the parallel.config argument
###
Demonstration_SGP <- abcSGP(sgpData_LONG,
parallel.config=list(
BACKEND="PARALLEL", TYPE="SOCK",
WORKERS=list(
PERCENTILES=8, BASELINE_PERCENTILES=8, PROJECTIONS=7, LAGGED_PROJECTIONS=6,
SUMMARY=8,
GA_PLOTS=8, SG_PLOTS=8)
)
)Run the code above in your browser using DataLab