studentGrowthProjections(panel.data,
sgp.labels,
grade.progression,
content_area.progression=NULL,
year_lags.progression=NULL,
grade.projection.sequence=NULL,
content_area.projection.sequence=NULL,
year_lags.projection.sequence=NULL,
max.forward.progression.years=NULL,
max.forward.progression.grade=NULL,
max.order.for.progression,
use.my.knots.boundaries,
use.my.coefficient.matrices,
panel.data.vnames,
achievement.level.prior.vname=NULL,
performance.level.cutscores,
calculate.sgps=TRUE,
convert.0and100=TRUE,
projection.unit="YEAR",
percentile.trajectory.values=NULL,
isotonize=TRUE,
lag.increment=0,
sgp.exact.grade.progression=FALSE,
projcuts.digits=NULL,
print.time.taken=TRUE)list containing longitudinal student data in wide format in panel.data$Panel_Data. See studentGrowthPercentiles
for data requirements. List osgp.labels, of the form list(my.year= ,
my.subject= ). The user-specified values are used to save the percentile growth projections/trajectories and identify coefficient matrices and knots & boundnum.panels, max.num.scores, list(my.year= , my.subject= ) specifying the set of pre-calculated
knots and boundaries for B-spline calculations. Knot and boundaries are stored (and must be made available) with panel.data supplied as a
list(my.year= , my.subject= ) specifying the set of pre-calculated
coefficient matrices to use for percentile growth projection/trajectory calculations. Coefficient matrices are stores (and must be available) with analyzeSGP when scale changes occur."GRADE", the default, or
"YEAR".panel.data list object with the additional percentile growth trajectories/percentiles stored in
panel.data$SGProjections$my.year.my.subject consisting of student IDs and the associated percentile growth projections/trajectories and cuts.
The data frame contains projections/trajectories for each performance level cut-point supplied and each percentile cut the user specifies.Betebenner, D. W. (2009). Norm- and criterion-referenced student growth. Educational Measurement: Issues and Practice, 28(4):42-51.
Betebenner, D. W. (2008). Toward a normative understanding of student growth. In K. E. Ryan & L. A. Shepard (Eds.), The Future of Test Based Accountability (pp. 155-170). New York: Routledge.
Dette, H. & Volgushev, S. (2008). Non-crossing non-parametric estimates of quantile curves. Journal of the Royal Statistical Society B, 70(3), 609-627.
studentGrowthPercentiles, sgpData## First calculate SGPs for 2013
my.grade.sequences <- list(3:4, 3:5, 3:6, 3:7, 4:8)
my.sgpData <- list(Panel_Data = sgpData)
for (i in seq_along(my.grade.sequences)) {
my.sgpData <- studentGrowthPercentiles(panel.data=my.sgpData,
sgp.labels=list(my.year=2013, my.subject="Reading"),
use.my.knots.boundaries="DEMO",
grade.progression=my.grade.sequences[[i]])
}
## Calculate Growth Projections
my.grade.progressions <- list(3, 3:4, 3:5, 3:6, 4:7)
for (i in seq_along(my.grade.progressions)) {
my.sgpData <- studentGrowthProjections(panel.data=my.sgpData,
sgp.labels=list(my.year=2013, my.subject="Reading"),
projcuts.digits=0,
projection.unit="GRADE",
performance.level.cutscores="DEMO",
percentile.trajectory.values=c(25, 50, 75),
grade.progression=my.grade.progressions[[i]])
}
## Save the Student Growth Projections Results to a .csv file:
write.csv(my.sgpData$SGProjections$READING.2013,
file= "2013_Reading_SGProjections.csv", row.names=FALSE, quote=FALSE)Run the code above in your browser using DataLab