studentGrowthProjections(panel.data, sgp.labels, grade.progression, content_area.progression=NULL,
year_lags.progression=NULL, grade.projection.sequence=NULL, content_area.projection.sequence=NULL, year_lags.projection.sequence=NULL, max.forward.progression.years=NULL, max.forward.progression.grade=NULL, max.order.for.progression, use.my.knots.boundaries, use.my.coefficient.matrices, panel.data.vnames, achievement.level.prior.vname=NULL, performance.level.cutscores, calculate.sgps=TRUE, convert.0and100=TRUE, trajectories.chunk.size=50000, sgp.projections.equated=NULL, projection.unit="YEAR", projection.unit.label=NULL, percentile.trajectory.values=NULL, return.percentile.trajectory.values=NULL, return.projection.group.identifier=NULL, return.projection.group.scale.scores=NULL, return.projection.group.dates=NULL, isotonize=TRUE, lag.increment=0,
sgp.exact.grade.progression=FALSE, projcuts.digits=NULL, SGPt=NULL, print.time.taken=TRUE)
list
containing longitudinal student data in wide format in panel.data$Panel_Data
. See studentGrowthPercentiles
for data requirements. List object must also contain panel.data$Knots_Boundaries
and panel.data$Coefficient_Matrices
. See sgpData
for an
exemplar data set. NOTE: The column position of the variables IS IMPORTANT, NOT the names of the variables.
sgp.labels
, of the form list(my.year= ,
my.subject= )
. The user-specified values are used to save the percentile growth projections/trajectories and identify coefficient matrices and knots & boundaries for calculation if
use.my.coefficient.matrices
or
use.my.knots.boundaries
is missing. Partly replaces previous argument proj.function.labels
.
num.panels
, max.num.scores
, and num.prior.scores
.
list(my.year= , my.subject= )
specifying the set of pre-calculated
knots and boundaries for B-spline calculations. Knot and boundaries are stored (and must be made available) with panel.data
supplied as a
list in panel.data$Knots_Boundaries$my.year.my.subject
. As of SGP_0.0-6.9 user can also supply a two letter state acronym to utilize knots and boundaries
within the SGPstateData
data set supplied with the SGP package. If missing, function tries to retrieve knots and boundaries from
panel.data$Knots_Boundaries$my.year.my.subject
where my.year
and my.subject
are provided by sgp.labels
.
list(my.year= , my.subject= )
specifying the set of pre-calculated
coefficient matrices to use for percentile growth projection/trajectory calculations. Coefficient matrices are stores (and must be available) with panel.data
supplied as a list in panel.data$Coefficient_Matrices
$my.year.my.subject
. If missing, function tries to retrieve coefficient matrices from
panel.data$Coefficient_Matrices$my.year.my.subject
where my.year
and my.subject
are provided by sgp.labels
.
performance.level.cutscores <- list( Reading=list(GRADE_3=c(cut1, cut2, cut3), GRADE_4=c(cut1, cut2, cut3), . . . GRADE_8=c(cut1, cut2, cut3)), Math=list(GRADE_3=c(cut1, cut2, cut3), . . . GRADE_7=c(cut1, cut2, cut3), GRADE_8=c(cut1, cut2, cut3)))Note that the subject name must match that provided by
sgp.labels
. If cuts are not desired leave the cutscore unspecified, which is the default.
If your state's cutscores are not included in the SGPstateData
data set or are incorrect, please contact
dbetebenner@nciea.org to have them added or corrected!
analyzeSGP
when scale changes occur.
trajectory.chunk.size
are passed to .get.percentile.trajectories
and .get.trajectories.and.cuts
.
"GRADE"
, the default, or
"YEAR"
.
projection.unit
.
studentGrowthProjections
analysis and time taken.
panel.data
list object with the additional percentile growth trajectories/percentiles stored in
panel.data$SGProjections$my.year.my.subject
consisting of student IDs and the associated percentile growth projections/trajectories and cuts.
The data frame contains projections/trajectories for each performance level cut-point supplied and each percentile cut the user specifies.
Betebenner, D. W. (2012). Growth, standards, and accountability. In G. J. Cizek, Setting Performance Standards: Foundations, Methods & Innovations. 2nd Edition (pp. 439-450). New York: Routledge.
Betebenner, D. W. (2009). Norm- and criterion-referenced student growth. Educational Measurement: Issues and Practice, 28(4):42-51.
Betebenner, D. W. (2008). Toward a normative understanding of student growth. In K. E. Ryan & L. A. Shepard (Eds.), The Future of Test Based Accountability (pp. 155-170). New York: Routledge.
Chernozhukov, V., Fernandez-Val, I. and Galichon, A. (2010), Quantile and Probability Curves Without Crossing. Econometrica, 78: 1093-1125.
studentGrowthPercentiles
, sgpData
## Not run:
# ## First calculate SGPs for 2014
# my.grade.sequences <- list(3:4, 3:5, 3:6, 3:7, 4:8)
# my.sgpData <- list(Panel_Data = sgpData)
#
# for (i in seq_along(my.grade.sequences)) {
# my.sgpData <- studentGrowthPercentiles(panel.data=my.sgpData,
# sgp.labels=list(my.year=2014, my.subject="Reading"),
# use.my.knots.boundaries="DEMO",
# grade.progression=my.grade.sequences[[i]])
# }
#
# ## Calculate Growth Projections
#
# my.grade.progressions <- list(3, 3:4, 3:5, 3:6, 4:7)
#
# for (i in seq_along(my.grade.progressions)) {
# my.sgpData <- studentGrowthProjections(panel.data=my.sgpData,
# sgp.labels=list(my.year=2014, my.subject="Reading"),
# projcuts.digits=0,
# projection.unit="GRADE",
# performance.level.cutscores="DEMO",
# percentile.trajectory.values=c(25, 50, 75),
# grade.progression=my.grade.progressions[[i]])
# }
#
# ## Save the Student Growth Projections Results to a .csv file:
#
# write.csv(my.sgpData$SGProjections$READING.2014,
# file= "2014_Reading_SGProjections.csv", row.names=FALSE, quote=FALSE)
# ## End(Not run)
Run the code above in your browser using DataLab