Learn R Programming

SHT (version 0.1.9)

norm.1972SF: Univariate Test of Normality by Shapiro and Francia (1972)

Description

Given an univariate sample \(x\), it tests $$H_0 : x\textrm{ is from normal distribution} \quad vs\quad H_1 : \textrm{ not } H_0$$ using a test procedure by Shapiro and Francia (1972), which is an approximation to Shapiro and Wilk (1965).

Usage

norm.1972SF(x)

Value

a (list) object of S3 class htest containing:

statistic

a test statistic.

p.value

\(p\)-value under \(H_0\).

alternative

alternative hypothesis.

method

name of the test.

data.name

name(s) of provided sample data.

Arguments

x

a length-\(n\) data vector.

References

shapiro_approximate_1972SHT

Examples

Run this code
## CRAN-purpose small example
x = rnorm(10)
norm.1972SF(x) # run the test

# \donttest{
## generate samples from several distributions
x = stats::runif(496)            # uniform
y = stats::rgamma(496, shape=2)  # gamma
z = stats::rlnorm(496)           # log-normal

## test above samples
test.x = norm.1972SF(x) # uniform
test.y = norm.1972SF(y) # gamma
test.z = norm.1972SF(z) # log-normal
# }

Run the code above in your browser using DataLab