Learn R Programming

SIS (version 0.6)

COXvanISISscad: (Iterative) Sure Independence Screening ((I)SIS) in the Cox proportional hazards regression model

Description

These functions implement the iterative sure independence screening with COXvanISISscad for vanilla ISIS and COXvarISISscad for variant ISIS in Cox proportional hazards regression model.

Usage

COXvanISISscad(x, time, status,  method = "efron", nsis=NULL, folds=NULL, 
rank.method="obj", eps0=1e-5, inittype='NoPen', tune.method="AIC",
ISIStypeCumulative=FALSE, DOISIS=TRUE, maxloop=5)

COXvarISISscad(x, time, status,  method = "efron", nsis=NULL, folds=NULL, 
rank.method="obj", eps0=1e-5, inittype='NoPen', tune.method="AIC",
vartype="First",  ISIStypeCumulative=FALSE, DOISIS=TRUE, maxloop=5)

Arguments

x
an (n * p) matrix of features.
time
an (n) vector of the follow up time for right censored data.
status
an (n) vector of the status indicator, normally 0=alive, 1=dead.
method
indicates how to handle observations that have tied (i.e., identical) survival times. The default "efron" method is generally preferred to the once-popular "breslow" method.
nsis
number of pedictors recuited by (I)SIS.
folds
fold information for cross validation.
rank.method
the criterion for ranking predictor variables in (I)SIS. It can be either obj or coeff.
tune.method
method for tuning regularization parameter.
inittype
inittype specifies the type of initial solution for the one-step SCAD. It can be either NoPen or L1.
vartype
vartype specifies variant (I)SIS of first type or second type.
ISIStypeCumulative
ISIStypeCumulative specifies whether to penalize variables selected by the previous step of the ISIS iteration in the following SCAD step. (ISIStypeCumulative= FALSE put penalties on all variables. In this case, the procedure is
DOISIS
DOISIS specifies whether to do iterative SIS.
maxloop
maximum number of loops in iterative SIS.
eps0
an effective zero relative to the scale of the maximum absolute marginal regression coefficients.

Value

  • Returns an object with
  • initRANKorderinitial predictor ranking order for vanilla SIS.
  • detail.pickind, detail.ISISinddetails of each loop of ISIS.
  • SISindthe vector of indices selected by SIS.
  • ISISindthe vector of indices selected by ISIS.
  • normal.exitindicator of normal exit.
  • nsisnumber of pedictors recuited by (I)SIS.
  • initRANKorder1, initRANKorder2initial predictor ranking order for variant SIS.

References

Jianqing Fan and Jinchi Lv (2008) Sure independence screening for ultra-high dimensional feature space (with discussion) Journal of Royal Statistical Society B, 36, 849-911. Jianqing Fan, Richard Samworth, and Yichao Wu (2009) Ultrahigh dimensional variable selection: beyond the linear model Journal of Machine Learning Research, to appear. Jianqing Fan and Rui Song (2009) Sure Independence Screening in Generalized Linear Models with NP-Dimensionality, technical report.

See Also

scadcox, fullscadcox

Examples

Run this code
set.seed(0)
n=150
p=200
truerho=0.5
beta <- c(4,4,4,-6*sqrt(2),4/3, rep(0,p-5))

corrmat=diag(rep(1-truerho, p))+matrix(truerho, p, p)
corrmat[,4]=sqrt(truerho)
corrmat[4, ]=sqrt(truerho)
corrmat[4,4]=1
corrmat[,5]=0
corrmat[5,]=0
corrmat[5,5]=1
cholmat=chol(corrmat)

x=matrix(rnorm(p*n, mean=0, sd=1), n, p)
x=x%*%cholmat

myrates <- exp(x%*%beta)

ytrue <- rexp(n, rate = myrates) 
cen <- rexp(n, rate = 0.1 )
time <- pmin(ytrue, cen)
status <- as.numeric(ytrue <= cen)

cox.van.sis <- COXvanISISscad(x, time, status)

cox.var.sis <- COXvarISISscad(x, time, status, vartype='Second')

#####compare the result
cox.van.sis$SIS

cox.van.sis$ISIS

cox.var.sis$SIS

cox.var.sis$ISIS

Run the code above in your browser using DataLab