# NOT RUN {
data(SKAT.example)
attach(SKAT.example)
#############################################################
# Compute the P-value of SKAT
# binary trait
obj<-SKAT_Null_Model(y.b ~ X, out_type="D")
SKAT(Z, obj, kernel = "linear.weighted")$p.value
#############################################################
# When you have no covariate to adjust.
# binary trait
obj<-SKAT_Null_Model(y.b ~ 1, out_type="D")
SKAT(Z, obj, kernel = "linear.weighted")$p.value
#########################################################
# Small sample adjustment
IDX<-c(1:100,1001:1100)
# With-adjustment
obj<-SKAT_Null_Model(y.b[IDX] ~ X[IDX,],out_type="D")
SKAT(Z[IDX,], obj, kernel = "linear.weighted")$p.value
# Without-adjustment
obj<-SKAT_Null_Model(y.b[IDX] ~ X[IDX,],out_type="D", Adjustment=FALSE)
SKAT(Z[IDX,], obj, kernel = "linear.weighted")$p.value
#########################################################
# Use SKATBinary
SKATBinary(Z[IDX,], obj, kernel = "linear.weighted")$p.value
# }
Run the code above in your browser using DataLab