Iteratively carry out association tests with phenotypes and SNP sets in SSD file.
SKAT.SSD.All(SSD.INFO, obj, ..., obj.SNPWeight=NULL)
SKATBinary.SSD.All(SSD.INFO, obj, ..., obj.SNPWeight=NULL)
SKATBinary_Robust.SSD.All(SSD.INFO, obj, ...,obj.SNPWeight=NULL)
SKAT_CommonRare.SSD.All(SSD.INFO, obj, ..., obj.SNPWeight=NULL) SKAT_CommonRare_Robust.SSD.All(SSD.INFO, obj, ..., obj.SNPWeight=NULL)
dataframe that contains SetID, p-values (P.value), the number of markers in the SNP sets (N.Marker.All), and the number of markers to test for an association after excluding non-polymorphic or high missing rates markers (N.Marker.Test). The output dataframe from SKATBinary.SSD.All (and others) have more columns. For example, the outcome from SKATBinary.SSD.All have columns for the method to compute p-values and the minimum achievable p-values (MAP).
the matrix that contains p-values of resampled phenotypes.
each element in the list is a vector of MAC of SNPs used in the test. The names are SNP-IDs.
SSD_INFO object returned from Open_SSD.
output object from SKAT_Null_Model.
further arguments to be passed to ``SKAT'' or ``SKATBinary''.
output object from Read_SNP_WeightFile (default=NULL). If NULL, the beta weight with the ``weights.beta'' parameter will be used.
Seunggeun Lee
Please see SKAT or SKATBinary for details.