Learn R Programming

SKNN (version 4.1.2)

PCAy: Revised PCA analysis

Description

It's a revised PCA analysis.

Usage

PCAy(data)

Value

An object of class "PCAyd".

Arguments

data

Numeric. Data matrix for revised PCA analysis.

Author

Yarong Yang and Yoram Rubin

References

Yarong Yang, Matt Over, and Yoram Rubin.(2012) Strategic Placement of Localization Devices (such as Pilot Points and Anchors) in Inverse Modeling Schemes. Water Resources Research, 48, W08519, doi:10.1029/2012WR011864.

Yarong Yang, Nader Ebrahimi, Yoram Rubin, and Jacob Zhang.(2025) SKNN: A Super K-Nearest Neighbor Classification Algorithm. technical report in preparation

Examples

Run this code
Sepal.Length<-c(4.8, 5.1, 4.6, 5.3, 5.0, 5.7, 5.7, 6.2, 5.1, 5.7, 6.7, 6.3,
 6.5, 6.2, 5.9)
Sepal.Width<-c(3.0, 3.8, 3.2, 3.7, 3.3, 3.0, 2.9, 2.9, 2.5, 2.8, 3.0, 2.5,
 3.0, 3.4, 3.0)
Petal.Length<-c(1.4, 1.6, 1.4, 1.5, 1.4, 4.2, 4.2, 4.3, 3.0, 4.1, 5.2, 5.0,
 5.2, 5.4, 5.1)
Petal.Width<-c(0.3, 0.2, 0.2, 0.2, 0.2, 1.2, 1.3, 1.3, 1.1, 1.3, 2.3, 1.9,
 2.0, 2.3, 1.8)
dat<-cbind(Sepal.Length,Sepal.Width,Petal.Length,Petal.Width)
Res<-PCAy(dat)

Run the code above in your browser using DataLab