outlierLasso: Outliers LASSO
Description
Use LASSO estimation to identify outliers in a set of time series by creating dummy
variables for every time point.
Usage
outlierLasso(
zt,
p = 12,
crit = 3.5,
family = "gaussian",
standardize = TRUE,
alpha = 1,
jend = 3
)
Arguments
zt
T by 1 vector of an observed scalar time series without missing values.
p
Seasonal period. Default value is 12.
crit
Criterion. Default is 3.5.
family
Response type. See the glmnet command in R. Possible types are "gaussian", "binomial", "poisson",
"multinomial", "cox", "mgaussian". Default is "gaussian".
standardize
Logical flag for zt variable standardization. See the glmnet command in R.
Default is TRUE.
alpha
Elasticnet mixing parameter, with \(0 \leq \alpha \leq 1\). See the glmnet command in R. Default value is 1.
jend
Number of first and last observations assumed to not be level shift outliers.
Default value is 3.
Examples
Run this code# NOT RUN {
data(TaiwanAirBox032017)
output <- outlierLasso(TaiwanAirBox032017[1:100,1])
# }
Run the code above in your browser using DataLab