# NOT RUN {
# Duplicates row 4 of Table 4 from Myers, et. al.
# Myers et. al. divides IUPM space into discrete values. This package searches
# entire parameter space, yielding a slightly different and more accurate MLE.
row4 <- get.mle(pos=c(2,1,0,0,0,0), # Number of positive wells per dilution level
replicates=rep(2,6), # Number of replicates per dilution level
dilutions=c(1e6,2e5,4e4,8e3,1600,320), # Cells per dilution level
conf.level=0.95, # Significance level
iupm=TRUE, # Display MLE in infected units per million
)
# Duplicates row 21 of Table 4 from Myers, et. al.
# Low PGOF example
# Myers et. al. divides IUPM space into discrete values. This package searches
# entire parameter space, yielding a slightly different and more accurate MLE.
row21 <- get.mle(pos=c(2,2,2,0,1,0),
replicates=rep(2,6),
dilutions=c(1e6,2e5,4e4,8e3,1600,320),
conf.level=0.95,
iupm=TRUE)
# Example calculating IUs per cell for an assay with 1 DL.
iu.example <- get.mle(pos=7, replicates=8, dilutions=25,
conf.level=0.95, iupm=FALSE)
# Monte Carlo example
# 67,081 total possible positive well outcomes, therefore
# Monte Carlo sampling is used to reduce computation time.
MC.example <- get.mle(pos=c(30,9,1,0),
replicates=c(36,36,6,6),
dilutions=c(2.5e6,5e5,1e5,2.5e4),
conf.level=0.95,
monte = 5000,
iupm=TRUE )
# }
Run the code above in your browser using DataLab