Learn R Programming

SLGP (version 1.0.1)

Spatial Logistic Gaussian Process for Field Density Estimation

Description

Provides tools for conditional and spatially dependent density estimation using Spatial Logistic Gaussian Processes (SLGPs). The approach represents probability densities through finite-rank Gaussian process priors transformed via a spatial logistic density transformation, enabling flexible non-parametric modeling of heterogeneous data. Functionality includes density prediction, quantile and moment estimation, sampling methods, and preprocessing routines for basis functions. Applications arise in spatial statistics, machine learning, and uncertainty quantification. The methodology builds on the framework of Leonard (1978) , Lenk (1988) , Tokdar (2007) , Tokdar (2010) , and is further aligned with recent developments in Bayesian non-parametric modelling: see Gautier (2023) , and Gautier (2025) ).

Copy Link

Version

Install

install.packages('SLGP')

Monthly Downloads

409

Version

1.0.1

License

GPL (>= 3)

Maintainer

Athénaïs Gautier

Last Published

January 20th, 2026

Functions in SLGP (1.0.1)

retrainSLGP

Retrain a fitted SLGP model with new data and/or estimation method
rosenblatt_transform_multivarStudent

Rosenblatt transform to multivariate Student distribution
predictSLGP_cdf

Predict cumulative distribution values at new locations using a SLGP model
sampleSLGP

Draw posterior predictive samples from a SLGP model
slgp

Define and can train a Spatial Logistic Gaussian Process (SLGP) model
predictSLGP_quantiles

Predict quantiles from a SLGP model at new locations
predictSLGP_newNode

Predict densities at new covariate locations using a given SLGP model
predictSLGP_moments

Predict centered or uncentered moments at new locations from a SLGP model
initialize_basisfun_RFF

Initialize parameters basis functions based on Random Fourier Features
SLGP-class

The SLGP S4 Class: Spatial Logistic Gaussian Process Model
crossdist

Computes the Euclidean distance between rows of two matrices
normalize_data

normalize_data: Normalize data to the range [0, 1]
check_basisfun_opts

Check basis function parameters
SLGP-package

SLGP: A package for spatially dependent probability distributions
initialize_basisfun_fillingRFF

Initialize space-filling Random Fourier Features
initialize_basisfun_inducingpt

Initialize parameters for inducing-point basis functions
evaluate_basis_functions

Evaluate basis functions at given locations.
initialize_basisfun

Initialize basis function parameters
initialize_basisfun_discreteFF

Initialize discrete Fourier features
pre_comput_NN

pre_comput_NN: Precompute quantities for SLGP basis evaluation with nearest-neighbor interpolation
pre_comput_WNN

pre_comput_WNN: Precompute quantities for SLGP basis evaluation with weighted nearest-neighbors
pre_comput_nothing

pre_comput_nothing: Precompute quantities for SLGP basis evaluation without interpolation