A generic S3 function to compute the specificity score for a classification model. This function dispatches to S3 methods in specificity() and performs no input validation. If you supply NA values or vectors of unequal length (e.g. length(x) != length(y)), the underlying C++ code may trigger undefined behavior and crash your R session.
Because specificity() operates on raw pointers, pointer-level faults (e.g. from NA or mismatched length) occur before any R-level error handling. Wrapping calls in try() or tryCatch() will not prevent R-session crashes.
To guard against this, wrap specificity() in a "safe" validator that checks for NA values and matching length, for example:
safe_specificity <- function(x, y, ...) {
stopifnot(
!anyNA(x), !anyNA(y),
length(x) == length(y)
)
specificity(x, y, ...)
}
Apply the same pattern to any custom metric functions to ensure input sanity before calling the underlying C++ code.
For multiple performance evaluations of a classification model, first compute the confusion matrix once via cmatrix(). All other performance metrics can then be derived from this one object via S3 dispatching:
## compute confusion matrix
confusion_matrix <- cmatrix(actual, predicted)## evaluate specificity
## via S3 dispatching
specificity(confusion_matrix)
## additional performance metrics
## below
The specificity.factor() method calls cmatrix() internally, so explicitly invoking specificity.cmatrix() yourself avoids duplicate computation, yielding significant speed and memory effciency gains when you need multiple evaluation metrics.
# S3 method for factor
specificity(actual, predicted, estimator = 0L, na.rm = TRUE, ...)If estimator is given as
A pair of <integer> or <factor> vectors of length \(n\), and \(k\) levels.
A <logical> value of length \(1\) (default: TRUE). If TRUE, NA values are removed from the computation.
This argument is only relevant when micro != NULL.
When na.rm = TRUE, the computation corresponds to sum(c(1, 2, NA), na.rm = TRUE) / length(na.omit(c(1, 2, NA))).
When na.rm = FALSE, the computation corresponds to sum(c(1, 2, NA), na.rm = TRUE) / length(c(1, 2, NA)).
Arguments passed into other methods.
The specificity has other names depending on research field:
True Negative Rate, tnr()
Selectivity, selectivity()
James, Gareth, et al. An introduction to statistical learning. Vol. 112. No. 1. New York: springer, 2013.
Hastie, Trevor. "The elements of statistical learning: data mining, inference, and prediction." (2009).
Pedregosa, Fabian, et al. "Scikit-learn: Machine learning in Python." the Journal of machine Learning research 12 (2011): 2825-2830.
Other Classification:
accuracy(),
auc.pr.curve(),
auc.roc.curve(),
baccuracy(),
brier.score(),
ckappa(),
cmatrix(),
cross.entropy(),
dor(),
fbeta(),
fdr(),
fer(),
fmi(),
fpr(),
hammingloss(),
jaccard(),
logloss(),
mcc(),
nlr(),
npv(),
plr(),
pr.curve(),
precision(),
recall(),
relative.entropy(),
roc.curve(),
shannon.entropy(),
zerooneloss()
Other Supervised Learning:
accuracy(),
auc.pr.curve(),
auc.roc.curve(),
baccuracy(),
brier.score(),
ccc(),
ckappa(),
cmatrix(),
cross.entropy(),
deviance.gamma(),
deviance.poisson(),
deviance.tweedie(),
dor(),
fbeta(),
fdr(),
fer(),
fmi(),
fpr(),
gmse(),
hammingloss(),
huberloss(),
jaccard(),
logloss(),
maape(),
mae(),
mape(),
mcc(),
mpe(),
mse(),
nlr(),
npv(),
pinball(),
plr(),
pr.curve(),
precision(),
rae(),
recall(),
relative.entropy(),
rmse(),
rmsle(),
roc.curve(),
rrmse(),
rrse(),
rsq(),
shannon.entropy(),
smape(),
zerooneloss()
## Classes and
## seed
set.seed(1903)
classes <- c("Kebab", "Falafel")
## Generate actual
## and predicted classes
actual_classes <- factor(
x = sample(x = classes, size = 1e3, replace = TRUE),
levels = c("Kebab", "Falafel")
)
predicted_classes <- factor(
x = sample(x = classes, size = 1e3, replace = TRUE),
levels = c("Kebab", "Falafel")
)
## Evaluate performance
SLmetrics::specificity(
actual = actual_classes,
predicted = predicted_classes
)
Run the code above in your browser using DataLab