Learn R Programming

SMPracticals (version 1.3-1)

pbc: Mayo Clinic Primary Biliary Cirrhosis Data

Description

Followup of 312 randomised and 108 unrandomised patients with primary biliary cirrhosis, a rare autoimmune liver disease, at Mayo Clinic.

Usage

data(pbc)

Arguments

source

Fleming, T. R. and Harrington, D. P. (1991) Counting Processes and Survival Analysis. Wiley: New York.

References

Davison, A. C. (2003) Statistical Models. Cambridge University Press. Page 549.

Examples

Run this code
data(pbc)  
# to make version of dataset used in book
pbcm <- pbc[(pbc$trt!=-9),]
pbcm$copper[(pbcm$copper==-9)] <- median(pbcm$copper[(pbcm$copper!=-9)])
pbcm$platelet[(pbcm$platelet==-9)] <- median(pbcm$platelet[(pbcm$platelet!=-9)])
attach(pbcm)

library(survival)
par(mfrow=c(1,2),pty="s")
plot(survfit(Surv(time,status)~trt),ylim=c(0,1),lty=c(1,2),
   ylab="Survival probability",xlab="Time (days)")
plot(survfit(coxph(Surv(time,status)~trt+strata(sex))),ylim=c(0,1),lty=c(1,2),
   ylab="Survival probability",xlab="Time (days)")
lines(survfit(coxph(Surv(time,status)~trt)),lwd=2)
# proportional hazards model fit
fit <- coxph(formula = Surv(time, status) ~ age + alb + alkphos + ascites + 
      bili + edtrt + hepmeg + platelet + protime + sex + spiders, data=pbcm)
summary(fit)
step.fit <- step(fit,direction="backward")

Run the code above in your browser using DataLab