ker.eq(scores, kert, hx = NULL, hy = NULL, degree, design, Kp = 1, scores2,
degreeXA, degreeYA, J, K, L, wx, wy, w, gapsX, gapsY, gapsA, lumpX, lumpY, lumpA)scores2
argument is then used for the scores of the sample taking test Y first followed by test
$X$.
If either the "NEAT_CB" or "NEAT_PSE" design is selected, a two column matrix containing
the observed scores on test $X$ (first column) and the observed scores on the anchor
test $A$ (second column). The scores2 argument is then used for the observed
scores on test $Y$.gauss", "logis", and "uniform"
for the gaussian, logistic and uniform kernels, respectivelyh (see details).scores.degreeXA)index
degree
Only used for the "NEAT" design.
index
degree
Only used for the "NEAT" design.
index
degree
Only used for the "NEAT" design.
ker.eq representing the kernel equating process. Generic functions such as
print, and summary have methods to show the results of the equating. The results include
summary statistics, equated values, standard errors of equating, and others.The function SEED can be used to obtain standard error of equating differences (SEED) of two
objects of class ker.eq. The function PREp can be used on a ker.eq object to
obtain the percentage relative error measure (see Von Davier et al, 2004).loglin.smooth). The value of $h_X$ and $h_Y$ can either be specified
by the user or left unspecified (default) in which case they are automatically calculated. For instance, one can
specifies large values of $h_X$ and $h_Y$, so that the $\hat{e}_Y(x)$ tends to the
linear equating function (see Theorem 4.5 in Von Davier et al, 2004 for more details).
Gonzalez, J. (2014). SNSequate: Standard and Nonstandard Statistical Models and Methods for Test Equating. Journal of Statistical Software, 59(7), 1-30.
Holland, P. and Thayer, D. (1989). The kernel method of equating score distributions. (Technical Report No 89-84). Princeton, NJ: Educational Testing Service.
Holland, P., King, B. and Thayer, D. (1989). The standard error of equating for the kernel method of equating score distributions (Tech. Rep. No. 89-83). Princeton, NJ: Educational Testing Service.
Von Davier, A., Holland, P., and Thayer, D. (2004). The Kernel Method of Test Equating. New York, NY: Springer-Verlag.
loglin.smooth, SEED, PREp
#Kernel equating under the "EG" design
data(Math20EG)
mod<-ker.eq(scores=Math20EG,kert="gauss",hx=NULL,hy=NULL,degree=c(2,3),design="EG")
summary(mod)
#Reproducing Table 7.6 in Von Davier et al, (2004)
scores<-0:20
SEEXy<-mod$SEEXy
SEEYx<-mod$SEEYx
Table7.6<-cbind(scores,SEEXy,SEEYx)
Table7.6
#Other nonstandard kernels. Table 10.3 in Von Davier (2011).
mod.logis<-ker.eq(scores=Math20EG,kert="logis",hx=NULL,hy=NULL,degree=c(2,3),design="EG")
mod.unif<-ker.eq(scores=Math20EG,kert="unif",hx=NULL,hy=NULL,degree=c(2,3),design="EG")
mod.gauss<-ker.eq(scores=Math20EG,kert="gauss",hx=NULL,hy=NULL,degree=c(2,3),design="EG")
XtoY<-cbind(mod.logis$eqYx,mod.unif$eqYx,mod.gauss$eqYx)
YtoX<-cbind(mod.logis$eqXy,mod.unif$eqXy,mod.gauss$eqXy)
Table10.3<-cbind(XtoY,YtoX)
Table10.3
Run the code above in your browser using DataLab