C matrix decomposition of their
covariance matrix, according to the specified equating design (see Details).
loglin.smooth(scores, degree, design, scores2, degreeXA, degreeYA,
J, K, L, wx, wy, w, gapsX, gapsY, gapsA, lumpX, lumpY, lumpA, ...)scores2
argument is then used for the scores of the sample taking test Y first followed by test
$X$.
If either the "NEAT_CB" or "NEAT_PSE" design is selected, a two column matrix containing
the observed scores on test $X$ (first column) and the observed scores on the anchor
test $A$ (second column). The scores2 argument is then used for the observed
scores on test $Y$.scores.degreeXA)index
degree
Only used for the "NEAT" design.
index
degree
Only used for the "NEAT" design.
index
degree
Only used for the "NEAT" design.
Holland, P. and Thayer, D. (1987). Notes on the use of loglinear models for fitting discrete probability distributions. Research Report 87-31, Princeton NJ: Educational Testing Service.
Von Davier, A., Holland, P., and Thayer, D. (2004). The Kernel Method of Test Equating. New York, NY: Springer-Verlag. [1] Moses, T. "Paper SA06_05 Using PROC GENMOD for Loglinear Smoothing Tim Moses and Alina A. von Davier, Educational Testing Service, Princeton, NJ".
glm, ker.eq#Table 7.4 from Von Davier et al. (2004)
data(Math20EG)
rj<-loglin.smooth(scores=Math20EG[,1],degree=2,design="EG")$sp.est
sk<-loglin.smooth(scores=Math20EG[,2],degree=3,design="EG")$sp.est
score<-0:20
Table7.4<-cbind(score,rj,sk)
Table7.4
## Example taken from [1]
score <- 0:20
freq <- c(10, 2, 5, 8, 7, 9, 8, 7, 8, 5, 5, 4, 3, 0, 2, 0, 1, 0, 2, 1, 0)
ldata <- data.frame(score, freq)
plot(ldata, pch=16, main="Data w Lump at 0")
m1 = loglin.smooth(scores=ldata$freq,kert="gauss",degree=c(3),design="EG")
m2 = loglin.smooth(scores=ldata$freq,kert="gauss",degree=c(3),design="EG",lumpX=0)
Ns = sum(ldata$freq)
points(m1$sp.est*Ns, col=2, pch=16)
points(m2$sp.est*Ns, col=3, pch=16) # Preserves the lump
Run the code above in your browser using DataLab