This function is used to obtain the estimated smoothing parameter \(\hat h\) that will be
used in the circular kernel density estimator (see circ.kernel).
findh(data, h = 1, to = 1)the data vector from which to calculate the estimated smoothing parameter \(\hat h\) that will be used in the circular kernel density estimator.
integer value from 1 to 9, specifying the smoothing parameter to calculate according to the following table:
| \(\hat h_1=1.06sn^{-1/5}\) |
| \(\hat h_2=1.06s_\circ n^{-1/5}\) |
| \(\hat h_3=1.06\bar{D}_\circ n^{-1/5}\) |
| \(\hat h_4=1.06|{D}_\circ|n^{-1/5}\) |
| \(\hat h_5=1.06{IQR}_\circ n^{-1/5}\) |
| \(\hat h_6=\frac{1.06}{1.349}{IQR}_\circ n^{-1/5}\) |
| \(\hat h_7=0.9s_\circ n^{-1/5}\) |
| \(\hat h_8=\frac{0.9}{1.349}{IQR}_\circ n^{-1/5}\) |
the value of the maximum domain of the data. Values will usually either be 1 or 2\(\pi\).
The function produces a single real value between 0 and 1, representing the rounded value (to 2 decimal places) of the estimating smoothing parameter.
Hall P, Watson G, Cabrera J (1987). Kernel density estimation with spherical data. Biometrika, 74 (4), 751-762. Jammalamadaka S, SenGupta A (2001). Topics in circular statistics. World Scientific Publishing Co. Pte. Ltd. Schutte WD (2014). Nonparametric estimation of the off-pulse interval(s) of a pulsar light curve. Ph.D. thesis, North-West University. URL http://hdl.handle.net/10394/12199 Schutte WD, Swanepoel JWH (2016). SOPIE: an R package for the non-parametric estimation of the off-pulse interval of a pulsar light curve. Monthly Notices of the Royal Astronomical Society, 461, 627-640. Sheather, S. & Jones, M. (1991). A reliable data-based bandwidth selection method for kernel density estimation, Journal of the Royal Statistical Society, Series B, 53:683-690. Silverman, B. (1986). Density estimation for Statistics and Data analysis, Chapman and Hall. Taylor, C. (2008). Automatic bandwith selection for circular density estimation, Computational Statistics & Data Analysis, 52:3493-3500. Wand, M. & Jones, M. (1995). Kernel Smoothing, Chapman and Hall.
# NOT RUN {
simdata<-von_mises_sim(n=5000,k=1,c=0.3,noise=0.2)
findh(simdata,h=9,to=1)
# }
Run the code above in your browser using DataLab