Learn R Programming

⚠️There's a newer version (2.11.14) of this package.Take me there.

SPOT (version 2.4.2)

Sequential Parameter Optimization Toolbox

Description

A set of tools for model-based optimization and tuning of algorithms. It includes surrogate models, optimizers, and design of experiment approaches. The main interface is spot, which uses sequentially updated surrogate models for the purpose of efficient optimization. The main goal is to ease the burden of objective function evaluations, when a single evaluation requires a significant amount of resources.

Copy Link

Version

Install

install.packages('SPOT')

Monthly Downloads

201

Version

2.4.2

License

GPL (>= 2)

Maintainer

Thomas Bartz-Beielstein

Last Published

April 18th, 2021

Functions in SPOT (2.4.2)

buildEnsembleStack

Ensemble: Stacking
buildLasso

Lasso Model Interface
buildRSM

Build Response Surface Model
dacePrepareFit

Prepare DACE fit
OCBA

Low Level OCBA
checkArrival

checkArrival
calculationMothes

Cyclone Simulation: Mothes
code2nat

Transform coded values to natural values
corrcubic

Correlation: Cubic
SPOT-package

Sequential Parameter Optimization Toolbox
expectedImprovement

Expected Improvement
funBBOBCall

funBBOBCall
corrlin

Correlation: Lin
correxp

Correlation: Exp
corrnoisygauss

Correlation: Noisy Gauss
daceStartParameters

Start parameter setup DACE
corrkriging

Correlation: Kriging
correxpg

Correlation: Expg
corrgauss

Correlation: Gauss
funRosen

funRosen
daceLikelihood

Wrapper for Maximum Likelihood Estimation
funMarkovChain

funMarkovChain
funOptimLecture

funOptimLecture
doParallel

Parallel execution of code, dependent on the operating system
daceObjfunc

DACE objective function
duplicateAndReplicateHandling

duplicateAndReplicateHandling
init_ring

init_ring
normalizeMatrix

Normalize design
initialInputCheck

initialInputCheck. Initial Input Check of Spot Configuration
funRosen2

funRosen2
infillEI

Expected Improvement Infill Criterion
getNatDesignFromCoded

Get natural parameter values from coded +-1 representation
optimLHD

Minimization by Latin Hypercube Sampling
optimLBFGSB

Minimization by L-BFGS-B
buildKriging

Build Kriging Model
buildKrigingDACE

Build DACE model
plotBestObj

Plot Best Objective Value
plotSingleDimFunction

plotSingleDimFunction
normalizeMatrix2

Normalize design 2
plotSIRModel

plotSIRModel
plotData

Interpolated plot
plot.spotTreeModel

Plot rpart tree model
designLHD

Latin Hypercube Design Generator
funBaBSimHospital

Optimization of the BaBSim.Hospital Simulator
designLHDNorm

Normalized LHD Design
funBranin

funBranin
predict.spotTreeModel

Prediction method for rpart tree models
generateMCPrediction

generateMCPrediction
infillExpectedImprovement

infillExpectedImprovement
funSring

funSring
predictKrigingReinterpolation

Predict Kriging Model (Re-interpolating)
buildRandomForest

Random Forest Interface
buildRanger

ranger Interface
plotFunction

Surface plot of a function
checkLowerNotEqualsUpper

Check That Lower and Upper are not Equal
infillGetFullPrediction

infillGetFullPrediction
checkLowerSmallerThanUpper

Check That Lower is smaller than Upper
corrspline

Correlation: Spline
maxNearestNeighbourDistance

maxNearestNeighbourDistance
daceEvalFit

Evaluate DACE fit
plotModel

Surface plot of a model
modelMarkovChain

modelMarkovChain
evalMarkovChain

evalMarkovChain
plotPrediction

plotPrediction
funGoldsteinPrice

Goldstein-Price Test Function
evaluateModel

Evaluate Model
funIshigami

Ishigami Test Function
predict.ensembleStack

Predict Stacked Ensemble
predict.kriging

Predict Kriging Model
predict.spotBOModel

Prediction method for bayesian optimization model
prepareBestObjectiveVal

Preprocess y Values to Plot Best Objective Value
preprocessCdeInputData

preprocessCdeInputData
print.spotLinearModel

Print method for linear model
print.spotRSM

Print method for RSM model
print.spotBOModel

Print method for BO model
predict.spotGaussianProcessModel

Prediction method for Gaussian Process Model
print.spotGaussianProcessModel

Print method for Gaussian Process Model
print.spotRandomForest

Print method for random forest
buildLM

Linear Model Interface
resSpot

S-Ring Simulation Data Obtained With SPOT
selectAll

selectAll
print.spotRanger

Print method for random forest
optimNLOPTR

optimNLOPTR. Minimization by NLOPT
selectN

selectN. Select n Design Points
resSpot2

S-Ring Simulation Data Obtained With SPOT
parseTunedRegionModel

parseTunedRegionModel
checkForNAs

Check for NAs in x lower and upper
buildLOESS

Build LOESS Model
spotAlgEs

Evolution Strategy Implementation
checkFunEvalsDesignSize

Check funEvals Setting against designSize
spotAlgEsSelection

spotAlgEsSelection
spotAlgEsObjMutation

spotAlgEsObjMutation
checkTypesOfInput

Check Input Types
spotAlgEsDominantReco

spotAlgEsDominantReco
predict.cvModel

predict.cvModel
checkVerbosityLevels

Check correct verbosity levels
predict.dace

DACE predictor
corrspherical

Correlation: Spherical
designUniformRandom

Uniform Design Generator
corrnoisykriging

Correlation: Noisy Kriging
predict.spotRanger

Predictor for spotExtraTrees
funCosts

funCosts
diff0

diff0
funCyclone

Objective function - Cyclone Simulation: Barth/Muschelknautz
predict.spotRandomForest

Prediction method for random forest
getCorrelationMatrix

getCorrelationMatrix
spotFillControlList

spotFillControlList
getCosts

getCosts
satter

Satterthwaite Function
print.spotTreeModel

Print method for rpart tree models
regionPopulation

Region Population Data
sann2spot

Interface SANN to SPOT
preprocessCdeTestData

preprocessCdeTestData
preprocessInputData

preprocessInputData
thetaNugget

thetaNugget
spotHelpBslash

Backslash operator.
simulate.kriging

Kriging Simulation
sequentialBifurcation

Sequential Bifurcation
thetaNuggetGradient

thetaNuggetGradient
spotAlgEsStratMutation

spotAlgEsStratMutation
spotAlgEsTermination

Termination
objectiveFunctionEvaluation

objectiveFunctionEvaluation Objective Function Evaluation
perceptron

perceptron
optimDE

Minimization by Differential Evolution
spotAlgEsInterReco

spotAlgEsInterReco
plot.spotRSM

Plot RSM model
spotCleanup

Clean up
spotAlgEsInterRecoBeSw02

spotAlgEsInterRecoBeSw02
spotControl

spotControl
spotPower

spotPower
regionTest

Region Test Data
spotPlotSeverity

spotPlotSeverity
repeatsOCBA

Optimal Computing Budget Allocation
wrapBatchTools

wrapBatchTools
regionTrain

Region Train Data
tuneRegionModel

tuneRegionModel
wrapSystemCommand

wrapSystemCommand
wrapFunction

Function Evaluation Wrapper
wrapFunctionParallel

Parallelized Function Evaluation Wrapper
simulateFunction

simulateFunction
repmat

repmat
simulationDecompose

Kriging Simulation: Decomposition
wrapSystem_parseMatrixToString

wrapSystem_parseMatrixToString
spotAlgEsIndividualInitial

Individual Initialization
spotAlgEsInitParentPop

Initialize Parent Population
plotRegion

plotRegion
plotRegionByName

plotRegionByName
predict.spotLOESS

Predict loess model
buildBO

Bayesian Optimization Model Interface
predict.spotLassoModel

Prediction method for lasso model
preprocessTestData

preprocessTestData
print.dace

Print Function DACE Kriging
buildCVModel

buildCVModel
buildTreeModel

Tree Regression Interface
regpoly0

Regression: Regpoly0
ring

ring
regpoly1

Regression: Regpoly1
resTuneRegionModel

Tuned Region Model Data
calculationBarthMuschelknautz

Cyclone Simulation: Barth/Muschelknautz
checkInputDimensionsionalityCorrect

Check Dimensions of spotInputs
simulationSpectral

simulationSpectral
spot

spot
spotAlgEsMarriage

Marriage
checkInputTypesInControl

Check input types in the spotControl list.
daceFixTheta

Fix model parameters DACE
spotAlgEsMarriageWithReplace

Marriage with replace
descentSpotRSM

Descent RSM model
spotLoop

Sequential Parameter Optimization Main Loop
dataGasSensor

Gas Sensor Data
daceGetFit

Get DACE fit
spotPlotPower

spotPlotPower
funSoblev99

Sobol and Levitan Test Function
funSphere

funSphere
linearAdaptedSE

linearAdaptedSE
krigingLikelihood

Calculate negative log-likelihood
sringRes3

S-Ring Simulation Data
optimES

Evolution Strategy
optimGenoud

Minimization by GENetic Optimization Using Derivatives
subgroups

Return effects for each subgroup
predict.spotLinearModel

Prediction method for linear model
predict.spotRSM

Predict RSM model
print.spotLOESS

Print method for loess model
print.spotLassoModel

Print method for lasso model
regpoly2

Regression: Regpoly2
spotAlgEsGetSuccessRate

get Success Rate
repairNonNumeric

Repair Non-numeric Values
spotAlgEsHps

Termination hps
spotSeverity

spotSeverity
sring

sring
sringRes2

S-Ring Simulation Data
sringRes1

S-Ring Simulation Data
buildGaussianProcess

Gaussian Process Model Interface