# NOT RUN {
library(tidyverse)
library(caret)
library(SSLR)
library(tidymodels)
data(wine)
set.seed(1)
train.index <- createDataPartition(wine$Wine, p = .7, list = FALSE)
train <- wine[ train.index,]
test <- wine[-train.index,]
cls <- which(colnames(wine) == "Wine")
#% LABELED
labeled.index <- createDataPartition(train$Wine, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA
m <- SSLRRandomForest(trees = 5, w = 0.3) %>% fit(Wine ~ ., data = train)
#Accuracy
predict(m,test) %>%
bind_cols(test) %>%
metrics(truth = "Wine", estimate = .pred_class)
#For probabilities
predict(m,test, type = "prob")
# }
Run the code above in your browser using DataLab