Learn R Programming

SSN (version 1.1.1)

getSSNdata.frame: Extract data from SSN objects as a data.frame

Description

The getSSNdata.frame function extracts the points data data.frame, either observation data or prediction data, from the specified SSN object.

Usage

getSSNdata.frame(x, Name = "Obs")

Arguments

x
an object of class SpatialStreamNetwork-class, influenceSSN-class, glmssn-class, or "glmssn.predict".
Name
the internal name of the data set in the object x. For observed values, this will always be "Obs", the default.

Value

Details

The internal Name for observed data in objects of class SpatialStreamNetwork is "Obs" and it is the default. If another Name is specified, it must represent a prediction data set in the SpatialStreamNetwork-class, influenceSSN-class, glmssn-class, or "glmssn.predict" object. For SpatialStreamNetwork objects, these names are obtained using the call ssn@predpoints@ID. For all other object classes, the names are obtained using the call object$ssn.object@predpoints@ID. See examples for additional details.

See Also

putSSNdata.frame

Examples

Run this code
library(SSN)
# NOT RUN
#mf04 <- importSSN(system.file("lsndata/MiddleFork04.ssn",
#  package = "SSN"), o.write = TRUE)
#  use SpatialStreamNetwork object mf04p that was already created
data(mf04)
#Update path in mf04, will vary for each users installation
mf04 <- updatePath(mf04, system.file("lsndata/MiddleFork04.ssn", package = "SSN"))

obsDF <- getSSNdata.frame(mf04)
head(obsDF)

# get some model fits stored as data objects
data(modelFits)
#NOT RUN use this one
#fitSp <- glmssn(Summer_mn ~ ELEV_DEM + netID,
#    ssn.object = mf04p, EstMeth = "REML", family = "Gaussian",
#    CorModels = c("Exponential.tailup","Exponential.taildown",
#    "Exponential.Euclid"), addfunccol = "afvArea")
#Update path for fitSP, will vary for each users installation
fitSp$ssn.object <- updatePath(fitSp$ssn,system.file("lsndata/MiddleFork04.ssn", package = "SSN"))

# Get the data.frame from an influenceSSN object and plot the residuals
fitSpRes <- residuals(fitSp)
fitSpResDF <- getSSNdata.frame(fitSpRes)
# NOT RUN
#plot(fitSpResDF[,"_resid.crossv_"],fitSpResDF[,"_resid_"], pch = 19,
#  ylab = "Cross-validation Residuals", xlab = "Raw Residuals")

# Get the data.frame for the prediction locations
fitSpPred <- predict(fitSp, predpointsID = "pred1km")
predNames<- fitSpPred$ssn.object@predpoints@ID
fitSpPredDF <- getSSNdata.frame(fitSpPred, predNames[1])
head(fitSpPredDF)

Run the code above in your browser using DataLab