if (FALSE) {
library(SSN)
#for examples, copy MiddleFork04.ssn directory to R's temporary directory
copyLSN2temp()
# NOT RUN
# Create a SpatialStreamNetork object that also contains prediction sites
#mf04p <- importSSN(paste0(tempdir(),'/MiddleFork04.ssn'),
# predpts = "pred1km", o.write = TRUE)
#use mf04p SpatialStreamNetwork object, already created
data(mf04p)
#for examples only, make sure mf04p has the correct path
#if you use importSSN(), path will be correct
mf04p <- updatePath(mf04p, paste0(tempdir(),'/MiddleFork04.ssn'))
# Not needed: already added,
# add densely gridded prediction points for two stream segments
# mf04p <- importPredpts(mf04p, "Knapp", "ssn")
# mf04p <- importPredpts(mf04p, "CapeHorn", "ssn")
names(mf04p)
# see densely gridded prediction points on stream
plot(mf04p, PredPointsID = "Knapp")
# you could fit the model
#fitSpBk <- glmssn(Summer_mn ~ ELEV_DEM + netID,
# ssn.object = mf04p, EstMeth = "REML", family = "Gaussian",
# CorModels = c("Exponential.tailup","Exponential.taildown",
# "Exponential.Euclid"), addfunccol = "afvArea")
# or load the pre-fit model
data(modelFits)
fitSpBk$ssn.object <- updatePath(fitSpBk$ssn.object,
paste0(tempdir(),'/MiddleFork04.ssn'))
# one-at-a-time predictions for CapeHorn stream
## NOTE: need the amongpreds distance matrices for block prediction
createDistMat(mf04p, predpts = "CapeHorn", o.write = TRUE, amongpreds = TRUE)
fitSpPredC <- predict(fitSpBk, "CapeHorn")
# plot densely gridded prediction points on stream
plot(fitSpPredC, "Summer_mn")
# block prediction for CapeHorn stream
BlockPredict(fitSpBk, "CapeHorn")
## Another example
# one-at-a-time predictions for Knapp stream
createDistMat(mf04p, predpts = "Knapp", o.write = TRUE, amongpreds = TRUE)
fitSpPredK <- predict(fitSpBk, "Knapp")
# plot densely gridded prediction points on stream
plot(fitSpPredK, "Summer_mn")
# block prediction for Knapp stream
BlockPredict(fitSpBk, "Knapp")
}
Run the code above in your browser using DataLab