library(SSN)
# NOT RUN
#mf04p <- importSSN(system.file("lsndata/MiddleFork04.ssn",
# package = "SSN"), predpts = "pred1km", o.write = TRUE)
# use SpatialStreamNetwork object mf04p that was already created
data(mf04p)
#make sure mf04p has the correct path, will vary for each users installation
mf04p@path <- system.file("lsndata/MiddleFork04.ssn", package = "SSN")
# get some model fits stored as data objects
data(modelFits)
#NOT RUN use this one
#fitSp <- glmssn(Summer_mn ~ ELEV_DEM + netID,
# ssn.object = mf04p, EstMeth = "REML", family = "Gaussian",
# CorModels = c("Exponential.tailup","Exponential.taildown",
# "Exponential.Euclid"), addfunccol = "afvArea")
#Update the path in fitSp, will vary for each users installation
fitSp$ssn.object <- updatePath(fitSp$ssn.object,
system.file("lsndata/MiddleFork04.ssn", package = "SSN"))
# Extract predictions and standard errors for the prediction sites
fitSpPred <- predict(fitSp, predpointsID = "pred1km")
class(fitSpPred)
fitSpgetPreds <- getPreds(fitSpPred, pred.type = "pred")
head(fitSpgetPreds)
# Extract cross-validation predictions for the observed sites in two ways:
fitSpRes <- residuals(fitSp)
class(fitSpRes)
# Extract from the influenceSSN class object
fitSpResGetCV <- getPreds(fitSpRes, pred.type = "cv")
head(fitSpResGetCV)
# Extract from the glmssn.predict class object
fitSpResGetCV2 <- getPreds(fitSpPred, pred.type = "cv")
# These values are identical
identical(fitSpResGetCV,fitSpResGetCV) ## TRUE
Run the code above in your browser using DataLab