# Get temporary directory, where the example LSN will be stored
# locally.
temp_dir <- tempdir()
# Build the LSN. When working with your own data, lsn_path will be
# a local folder of your choice rather than a temporary directory.
edges<- lines_to_lsn(
streams = MF_streams,
lsn_path = temp_dir,
snap_tolerance = 1,
check_topology = FALSE,
overwrite = TRUE,
verbose = FALSE
)
# Incorporate observed sites, MF_obs, into LSN
obs<- sites_to_lsn(
sites = MF_obs,
edges = edges,
save_local = FALSE,
snap_tolerance = 100,
overwrite = TRUE,
verbose = FALSE
)
# Incorporate prediction dataset, MF_preds, into LSN
preds<- sites_to_lsn(sites = MF_preds,
edges = edges,
save_local = FALSE,
snap_tolerance = 1,
overwrite = TRUE,
verbose = FALSE
)
# Calculate the AFV for the edges using
# a column representing watershed area (h2oAreaKm2).
edges<- afv_edges(
edges=edges,
infl_col = "h2oAreaKm2",
segpi_col = "areaPI",
lsn_path = temp_dir,
afv_col = "afvArea",
overwrite = TRUE,
save_local = FALSE
)
# Calculate the AFV for observed sites (obs) and prediction
# dataset, preds.
site.list<- afv_sites(
sites = list(obs = obs,
preds = preds),
edges=edges,
afv_col = "afvArea",
save_local = FALSE,
overwrite = TRUE
)
# Calculate upstream distance for edges
edges<- updist_edges(
edges = edges,
lsn_path = temp_dir,
calc_length = TRUE,
length_col = "Length",
overwrite = TRUE,
save_local = FALSE,
verbose = FALSE
)
# Calculate upstream distance for observed sites (obs) and one
# prediction dataset (preds)
site.list<- updist_sites(
sites = site.list,
edges = edges,
length_col= "Length",
lsn_path = temp_dir,
save_local = FALSE,
overwrite = TRUE
)
# Assemble SSN object
ssn.obj<- ssn_assemble(
edges = edges,
lsn_path = temp_dir,
obs_sites = site.list[["obs"]],
preds_list = site.list[c("preds")],
ssn_path = paste0(temp_dir, "/example.ssn"),
import = TRUE,
overwrite = TRUE
)
# Summarise SSN object
summary(ssn.obj)
Run the code above in your browser using DataLab