Learn R Programming

STAN (version 2.0.3)

initHMM: Initialization of hidden Markov models

Description

Initialization of hidden Markov models

Usage

initHMM(obs, nStates, method, sizeFactors = matrix(1, nrow = length(obs), ncol = ncol(obs[[1]])), sharedCov = FALSE)

Arguments

obs
The observations. A list of one or more entries containing the observation matrix (numeric) for the samples (e.g. chromosomes).
nStates
The number of states.
method
Emission distribution of the model. One out of c("NegativeBinomial", "PoissonLogNormal", "NegativeMultinomial", "ZINegativeBinomial", "Poisson", "Bernoulli", "Gaussian", "IndependentGaussian")
sizeFactors
Library size factors for Emissions PoissonLogNormal or NegativeBinomial as a length(obs) x ncol(obs[[1]]) matrix.
sharedCov
If TRUE, (co-)variance of (Independent)Gaussian is shared over states. Only applicable to 'Gaussian' or 'IndependentGaussian' emissions. Default: FALSE.

Value

A HMM object.

Examples

Run this code

data(example)
hmm_ex = initHMM(observations, nStates=3, method="Gaussian") 

Run the code above in your browser using DataLab