# ---------------------------------------------------------
# Epley's model
m1 <- estimate_k_mixed(
athlete = RTF_testing$Athlete,
perc_1RM = RTF_testing$`Real %1RM`,
reps = RTF_testing$nRM
)
coef(m1)
# ---------------------------------------------------------
# Generic Epley's model that also estimates 1RM
m1 <- estimate_k_generic_1RM_mixed(
athlete = RTF_testing$Athlete,
weight = RTF_testing$`Real Weight`,
reps = RTF_testing$nRM
)
coef(m1)
# ---------------------------------------------------------
# Epley's model that also estimates 1RM
m1 <- estimate_k_1RM_mixed(
athlete = RTF_testing$Athlete,
weight = RTF_testing$`Real Weight`,
reps = RTF_testing$nRM
)
coef(m1)
# ---------------------------------------------------------
# Modifed Epley's model
m1 <- estimate_kmod_mixed(
athlete = RTF_testing$Athlete,
perc_1RM = RTF_testing$`Real %1RM`,
reps = RTF_testing$nRM
)
coef(m1)
# ---------------------------------------------------------
# Modified Epley's model that also estimates 1RM
m1 <- estimate_kmod_1RM_mixed(
athlete = RTF_testing$Athlete,
weight = RTF_testing$`Real Weight`,
reps = RTF_testing$nRM
)
coef(m1)
# ---------------------------------------------------------
# Linear/Brzycki model
m1 <- estimate_klin_mixed(
athlete = RTF_testing$Athlete,
perc_1RM = RTF_testing$`Real %1RM`,
reps = RTF_testing$nRM
)
coef(m1)
# ---------------------------------------------------------
# Linear/Brzycki model that also estimates 1RM
m1 <- estimate_klin_1RM_mixed(
athlete = RTF_testing$Athlete,
weight = RTF_testing$`Real Weight`,
reps = RTF_testing$nRM
)
coef(m1)
Run the code above in your browser using DataLab