set.seed(1)
# Generating return data
Taylor_mod <- dynamicsSVM(model = "Taylor", phi = 0.9,
theta = -7.36, sigma = 0.363)
Taylor_sim <- modelSim(t = 30, dynamics = Taylor_mod, init_vol = -7.36)
# Initial values and optimization bounds
init_par <- c( 0.7, -5, 0.3)
lower <- c(0.01, -20, 0.1); upper <- c(0.99, 0, 1)
# Running DNFOptim to get MLEs
optim_test <- DNFOptim(data = Taylor_sim$returns,
dynamics = Taylor_mod,
par = init_par, lower = lower, upper = upper, method = "L-BFGS-B")
# Parameter estimates
summary(optim_test)
# Predict 5 steps ahead
preds <- predict(optim_test, n_ahead = 5)
# Plot predictions with 95 percent confidence interval
plot(preds)
Run the code above in your browser using DataLab