Learn R Programming

SVG (version 1.0.0)

SVG-package: SVG: Spatially Variable Genes Detection Methods for Spatial Transcriptomics

Description

A unified framework for detecting spatially variable genes (SVGs) in spatial transcriptomics data. This package integrates multiple state-of-the-art SVG detection methods including 'MERINGUE' (Moran's I based spatial autocorrelation), 'Giotto' binSpect (binary spatial enrichment test), 'SPARK-X' (non-parametric kernel-based test), and 'nnSVG' (nearest-neighbor Gaussian processes). Each method is implemented with optimized performance through vectorization, parallelization, and 'C++' acceleration where applicable. Methods are described in Miller et al. (2021) tools:::Rd_expr_doi("10.1101/gr.271288.120"), Dries et al. (2021) tools:::Rd_expr_doi("10.1186/s13059-021-02286-2"), Zhu et al. (2021) tools:::Rd_expr_doi("10.1186/s13059-021-02404-0"), and Weber et al. (2023) tools:::Rd_expr_doi("10.1038/s41467-023-39748-z").

A unified framework for detecting spatially variable genes (SVGs) in spatial transcriptomics data. This package integrates multiple state-of-the-art SVG detection methods:

  • MERINGUE: Moran's I with binary adjacency network

  • Seurat: Moran's I with inverse distance weights

  • binSpect: Binary spatial enrichment test (from Giotto)

  • SPARK-X: Non-parametric kernel-based test

  • nnSVG: Nearest-neighbor Gaussian processes

  • MarkVario: Mark variogram (from spatstat)

Arguments

Main Functions

  • CalSVG: Unified interface for all SVG methods

  • CalSVG_MERINGUE: MERINGUE method (Moran's I with network)

  • CalSVG_Seurat: Seurat method (Moran's I with 1/d^2 weights)

  • CalSVG_binSpect: Giotto binSpect method

  • CalSVG_SPARKX: SPARK-X method

  • CalSVG_nnSVG: nnSVG method (requires BRISC)

  • CalSVG_MarkVario: Mark variogram method

Utility Functions

  • buildSpatialNetwork: Build spatial neighborhood network

  • moranI: Calculate Moran's I statistic

  • binarize_expression: Binarize gene expression

Author

Maintainer: Zaoqu Liu liuzaoqu@163.com (ORCID)

Other contributors:

  • SVGbench Contributors (Original method implementations) [contributor]

Zaoqu Liu liuzaoqu@163.com

References

  • Miller, B.F. et al. (2022) nnSVG for spatial transcriptomics. Nature Communications.

  • Sun, S. et al. (2020) Statistical analysis of spatial expression patterns. Nature Methods.

  • Dries, R. et al. (2021) Giotto: a toolbox for spatial transcriptomics. Genome Biology.

  • Miller, J.A. et al. (2021) MERINGUE: characterizing spatial gene expression. Genome Research.

See Also