## a compact reserve
### set plotting parameters
stations <-
sampling_stations[(sampling_stations$NERR.Site.ID == 'elk'
& sampling_stations$Status == 'Active'
& sampling_stations$isSWMP == "P"), ]$Station.Code
to_match <- c('wq', 'met')
stns <- stations[grep(paste(to_match, collapse = '|'), stations)]
shp_fl <- elk_spatial
bounding_elk <- c(-121.8005, 36.7779, -121.6966, 36.8799)
lab_dir <- c('L', 'R', 'L', 'L', 'L')
labs <- c('ap', 'cw', 'nm', 'sm', 'vm')
### Low zoom and default maptype plot (for CRAN testing, not recommended)
# Lower zoom number gives coarser text and fewer features
(x_low <- res_local_map('elk', stations = stns, bbox = bounding_elk,
lab_loc = lab_dir, shp = shp_fl,
zoom = 10))
# \donttest{
### Default zoom and maptype
x_def <- res_local_map('elk', stations = stns, bbox = bounding_elk,
lab_loc = lab_dir, shp = shp_fl,
zoom = 10)
### A multicomponent reserve (show two different bounding boxes)
# set plotting parameters
stations <- sampling_stations[(sampling_stations$NERR.Site.ID == 'cbm'
& sampling_stations$Status == 'Active'
& sampling_stations$isSWMP == "P"), ]$Station.Code
to_match <- c('wq', 'met')
stns <- stations[grep(paste(to_match, collapse = '|'), stations)]
shp_fl <- cbm_spatial
bounding_cbm_1 <- c(-77.393, 38.277, -75.553, 39.741)
bounding_cbm_2 <- c(-76.8, 38.7, -76.62, 38.85)
lab_dir <- c('L', 'R', 'L', 'L', 'L')
labs <- c('ap', 'cw', 'nm', 'sm', 'vm')
### plot
y <- res_local_map('cbm', stations = stns, bbox = bounding_cbm_1,
lab_loc = lab_dir, shp = shp_fl)
z <- res_local_map('cbm', stations = stns, bbox = bounding_cbm_2,
lab_loc = lab_dir, shp = shp_fl)
# }
Run the code above in your browser using DataLab