title: "ScaleSpikeSlab" author: "Niloy Biswas" date: "31/01/2022" output: html_document: keep_md: yes
ScaleSpikeSlab (S^3)
This package contains algorithms for Scalable Spike-and-Slab (S^3), a scalable Gibbs sampling implementation for high-dimensional Bayesian regression with the continuous spike-and-slab prior.
It is based on the article "Scalable Spike-and-Slab",
by Niloy Biswas, Lester Mackey and Xiao-Li Meng. The folder inst contains
scripts to reproduce the results of the article.
Installation
The package can be installed from R via:
# install.packages("devtools")
devtools::install_github("niloyb/ScaleSpikeSlab/R_package")
# Install dependencies Rcpp, RcppEigen
install.packages(c("Rcpp", "RcppEigen"))
# Install additional packages to help with parallel computation and plotting
install.packages(c("doParallel", "doRNG", "foreach", "dplyr", "tidyr",
"ggplot2", "latex2exp", "reshape2", "ggpubr"))A tutorial with Riboflavin GWAS data
Import data and select hyperparameters.
set.seed(1)
library(ScaleSpikeSlab)
# Riboflavin linear regression dataset of Buhlmann et al. (2014)
data(riboflavin)
X <- riboflavin$x
Xt <- t(X)
y <- riboflavin$y
# Choose hyperparamters
params <- spike_slab_params(n=nrow(X),p=ncol(X))Run MCMC with S^3
library(doParallel)
registerDoParallel(cores = detectCores()-1)
library(foreach)
no_chains <- 50
sss_chain_z_output <-
foreach(i = c(1:no_chains), .combine=rbind)%dopar%{
sss_chain <- spike_slab_linear(chain_length=5e3,burnin=1e3,X=X,Xt=Xt,y=y,
tau0=params$tau0,tau1=params$tau1,q=params$q,
verbose=FALSE,store=FALSE)
return(as.vector(sss_chain$z_ergodic_avg))
}Plot Spike-and-Slab marginal posterior probabilities for variable selection
library(dplyr)
library(ggplot2)
library(latex2exp)
riboflavin_df <-
data.frame(post_prob_mean=apply(sss_chain_z_output,2,mean),
post_prob_sd=apply(sss_chain_z_output,2,sd),
cov_index=c(1:ncol(X)), no_chains=no_chains) %>%
arrange(desc(post_prob_mean)) %>%
mutate(xaxis =1:n())
ggplot(riboflavin_df, aes(x=xaxis, y=post_prob_mean)) +
geom_point(size=2) +
geom_errorbar(aes(ymax=(post_prob_mean+3*post_prob_sd/sqrt(no_chains)),
ymin=(post_prob_mean-3*post_prob_sd/sqrt(no_chains))),
position=position_dodge(.9)) +
xlab('Riboflavin Covariates') +
ylab(TeX('Marginal posterior probabilities')) +
scale_x_continuous(trans='log10') + theme_classic(base_size = 12)