rprob(x, df = nrow(x) - 2)
ote{ You can print the whole matrix using code{cor(t(x))}. } examples{ data(nerlove63)
rprob(nerlove63)
# a stacked up table rstack(rprob(nerlove63)) summary(lm(output ~ plabor + totcost, data = nerlove63)) # The final p-value of the OLS compares to the probabilities in the # intersection of output and plabor and output and totcost in the matrix. } author{ Daniel Marcelino, email{dmarcelino@live.com} } references{ Aldrich, John (1995) Correlations Genuine and Spurious in Pearson and Yule. emph{Statistical Science,} bold{10(4),} 364--376.
Spiegel, M. R. (1992) Correlation Theory. in: emph{Theory and Problems of Probability and Statistics,} 2nd ed. New York: McGraw-Hill, pp. 294--323. } seealso{ code{rstack} } keyword{Descriptive} keyword{Tables}