Learn R Programming

SemiCompRisks (version 2.2)

initiate.startValues: The function that initiates starting values for a single chain.

Description

The function initiates starting values for a single chain. Users are allowed to set some non-null values to starting values for a set of parameters. The function will automatically generate starting values for any parameters whose values are not specified.

Usage

initiate.startValues(Y, lin.pred, data, model, cluster = NULL, 
                   beta1 = NULL, beta2 = NULL, beta3 = NULL, beta = NULL,
                   gamma.ji = NULL, theta = NULL,
                   V.j1 = NULL, V.j2 = NULL, V.j3 = NULL, V.j = NULL,
                   WB.alpha = NULL, WB.kappa = NULL, 
                   MVN.SigmaV = NULL, Normal.zeta = NULL, 
                   DPM.class = NULL, DPM.tau = NULL)

Arguments

Y
For BayesID, it is a data.frame containing semi-competing risks outcomes from n subjects. For BayesSurv, it is a data.frame containing univariate time-to-event outcomes from n subjects.
lin.pred
For BayesID, it is a list containing three formula objects that correspond to $h_g()$, $g$=1,2,3. For BayesSurv, it is a formula object that corresponds to $h()$.
data
a data.frame in which to interpret the variables named in the formula(s) in lin.pred.
model
a character vector that specifies the type of components in a model. Check BayesID and BayesSurv.
cluster
a vector of cluster information for n subjects. The cluster membership must be set to consecutive positive integers, $1:J$.
beta1
starting values of $\beta_1$ for BayesID.
beta2
starting values of $\beta_2$ for BayesID.
beta3
starting values of $\beta_3$ for BayesID.
beta
starting values of $\beta$ for BayesSurv.
gamma.ji
starting values of $\gamma$ for BayesID.
theta
starting values of $\theta$ for BayesID.
V.j1
starting values of $V_{j1}$ for BayesID.
V.j2
starting values of $V_{j2}$ for BayesID.
V.j3
starting values of $V_{j3}$ for BayesID.
V.j
starting values of $V_{j}$ for BayesSurv.
WB.alpha
starting values of the Weibull parameters, $\alpha_g$ for BayesID. starting values of the Weibull parameter, $\alpha$ for BayesSurv.
WB.kappa
starting values of the Weibull parameters, $\kappa_g$ for BayesID. starting values of the Weibull parameter, $\kappa$ for BayesSurv.
MVN.SigmaV
starting values of $\Sigma_V$ in DPM models for BayesID.
Normal.zeta
starting values of $\zeta$ in DPM models for BayesSurv.
DPM.class
starting values of the class membership in DPM models for BayesID and BayesSurv.
DPM.tau
starting values of $\tau$ in DPM models for BayesID and BayesSurv.

Value

  • initiate.startValues returns a list containing starting values for a sigle chain that can be used for BayesID and BayesSurv.

References

Lee, K. H., Haneuse, S., Schrag, D., and Dominici, F. (2015), Bayesian semiparametric analysis of semicompeting risks data: investigating hospital readmission after a pancreatic cancer diagnosis, Journal of the Royal Statistical Society: Series C, 64, 2, 253-273. Lee, K. H., Dominici, F., Schrag, D., and Haneuse, S., Hierarchical models for cluster-correlated semicompeting risks data with application to quality of end-of-life care for pancreatic cancer, arXiv:1502.00526; submitted.

See Also

BayesID, BayesSurv

Examples

Run this code
## See Examples in \code{\link{BayesID}} and \code{\link{BayesSurv}}.

Run the code above in your browser using DataLab