initiate.startValues(Y, lin.pred, data, model, cluster = NULL, beta1 = NULL, beta2 = NULL, beta3 = NULL, beta = NULL, gamma.ji = NULL, theta = NULL, V.j1 = NULL, V.j2 = NULL, V.j3 = NULL, V.j = NULL, WB.alpha = NULL, WB.kappa = NULL, PEM.lambda1=NULL, PEM.lambda2=NULL, PEM.lambda3=NULL, PEM.lambda=NULL, PEM.s1=NULL, PEM.s2=NULL, PEM.s3=NULL, PEM.s=NULL, PEM.mu_lam=NULL, PEM.sigSq_lam=NULL, MVN.SigmaV = NULL, Normal.zeta = NULL, DPM.class = NULL, DPM.tau = NULL)BayesID, it is a data.frame containing semi-competing risks outcomes from n subjects.
For BayesSurv, it is a data.frame containing univariate time-to-event outcomes from n subjects.
BayesID, it is a list containing three formula objects that correspond to $h_g()$, $g$=1,2,3.
For BayesSurv, it is a formula object that corresponds to $h()$.
lin.pred.
n subjects. The cluster membership must be set to consecutive positive integers, $1:J$.
BayesID.
BayesID.
BayesID.
BayesSurv.
BayesID.
BayesID.
BayesID.
BayesID.
BayesID.
BayesSurv.
BayesID.
starting values of the Weibull parameter, $\alpha$ for BayesSurv.
BayesID.
starting values of the Weibull parameter, $\kappa$ for BayesSurv.
BayesID.
BayesID.
BayesID.
BayesSurv.
BayesID.
BayesID.
BayesID.
BayesSurv.
BayesID.
starting values of the PEM parameter, $\mu_{\lambda}$ for BayesSurv.
BayesID.
starting values of the PEM parameter, $\sigma_{\lambda}^2$ for BayesSurv.
BayesID.
BayesSurv.
BayesID and BayesSurv.
BayesID and BayesSurv.
initiate.startValues returns a list containing starting values for a sigle chain that can be used for BayesID and BayesSurv.
BayesID, BayesSurv
## See Examples in \code{\link{BayesID}} and \code{\link{BayesSurv}}.
Run the code above in your browser using DataLab