## Not run:
#
# library(SemiParBIVProbit)
#
# ############
# ## EXAMPLE 1
# ############
# ## Generate data
# ## Correlation between the two equations 0.5 - Sample size 400
#
# set.seed(0)
#
# n <- 400
#
# Sigma <- matrix(0.5, 3, 3); diag(Sigma) <- 1
# u <- rMVN(n, rep(0,3), Sigma)
#
# x1 <- round(runif(n)); x2 <- runif(n); x3 <- runif(n)
#
# y1 <- ifelse(-1.55 + 2*x1 - 0.6*x2 + u[,1] > 0, 1, 0)
# y2 <- ifelse(-0.25 - 1.25*x1 + x2 + u[,2] > 0, 1, 0)
# y3 <- ifelse(-0.75 + 0.25*x1 + + u[,3] > 0, 1, 0)
#
# dataSim <- data.frame(y1, y2, y3, x1, x2, x3)
#
# out <- SemiParTRIVProbit(list(y1 ~ x1 + x2,
# y2 ~ x1 + x2,
# y3 ~ x1),
# data = dataSim)
# conv.check(out)
# summary(out)
# AIC(out)
# BIC(out)
#
#
# ############
# ## EXAMPLE 2
# ############
# ## Generate data
# ## with double sample selection
#
# set.seed(0)
#
# n <- 5000
#
# Sigma <- matrix(c(1, 0.5, 0.4,
# 0.5, 1, 0.6,
# 0.4, 0.6, 1 ), 3, 3)
#
# u <- rMVN(n, rep(0,3), Sigma)
#
# x1 <- runif(n)
# x2 <- runif(n)
# x3 <- runif(n)
# x4 <- runif(n)
#
# y1 <- 1 + 1.5*x1 - x2 + 0.8*x3 - 1.5*x4 + u[, 1] > 0
# y2 <- 1 - 2.5*x1 + 1.2*x2 + x3 + u[, 2] > 0
# y3 <- 1.58 + 1.5*x1 - 2.5*x2 + u[, 3] > 0
#
# dataSim <- data.frame(y1, y2, y3, x1, x2, x3, x4)
#
# f.l <- list(y1 ~ x1 + x2 + x3 + x4,
# y2 ~ x1 + x2 + x3,
# y3 ~ x1 + x2)
#
# out <- SemiParTRIVProbit(f.l, data = dataSim, Model = "TSS")
#
# prev(out)
# prev(out, type = "univariate")
# prev(out, type = "naive")
#
# ## End(Not run)
Run the code above in your browser using DataLab