Learn R Programming

SemiParBIVProbit (version 3.7-1)

meps: MEPS data

Description

2008 MEPS data.

Usage

data(meps)

Arguments

Format

meps is a 18592 row data frame with the following columns
bmi
body mass index.
age
age in years.
gender
equal to 1 if male.
race
levels: 2 white, 3 black, 4 native American, 5 others.
education
years of education.
health
levels: 5 excellent, 6 very good, 7 good, 8 fair, 9 poor.
limitation
equal to 1 if health limits physical activity.
region
levels: 2 northeast, 3 mid-west, 4 south, 5 west.
private
equal to 1 if individual has private health insurance.
visits.hosp
equal to 1 if at least one visit to hospital outpatient departments.
diabetes
equal to 1 if diabetic.
hypertension
equal to 1 if hypertensive.
hyperlipidemia
equal to 1 if hyperlipidemic.
income
income (000's).

Source

The data have been obtained from http://www.meps.ahrq.gov/.

Examples

Run this code

## Not run:  
# 
# ###################################################
# ###################################################
# 
# library("SemiParBIVProbit")
# data("meps", package = "SemiParBIVProbit") 
# 
# ###################################################
# # Bivariate brobit models with endogenous treatment
# ###################################################
# 
# treat.eq <- private ~ s(bmi) + s(income) + s(age) + s(education) +
#                       as.factor(health) + as.factor(race) +
#                       as.factor(limitation) + as.factor(region) + 
#                       gender  + hypertension + hyperlipidemia + diabetes
# out.eq <- visits.hosp ~ private + s(bmi) + s(income) + s(age) + 
#                         s(education) + as.factor(health) + 
#                         as.factor(race) + as.factor(limitation) + 
#                         as.factor(region) + gender + hypertension + 
#                         hyperlipidemia + diabetes
# 
# f.list <- list(treat.eq, out.eq) 
# bpN    <- SemiParBIVProbit(f.list, data = meps)
# bpF    <- SemiParBIVProbit(f.list, data = meps, BivD = "F")
# bpC0   <- SemiParBIVProbit(f.list, data = meps, BivD = "C0")
# bpC180 <- SemiParBIVProbit(f.list, data = meps, BivD = "C180")
# bpJ0   <- SemiParBIVProbit(f.list, data = meps, BivD = "J0")
# bpJ180 <- SemiParBIVProbit(f.list, data = meps, BivD = "J180")
# bpG0   <- SemiParBIVProbit(f.list, data = meps, BivD = "G0")
# bpG180 <- SemiParBIVProbit(f.list, data = meps, BivD = "G180")
# 
# conv.check(bpJ0)
# 
# AIC(bpN, bpF, bpC0, bpC180, bpJ0, bpJ180, bpG0, bpG180) 
# 
# set.seed(1)
# summary(bpJ0, cm.plot = TRUE, cex.axis = 1.6, 
#         cex.lab = 1.6, cex.main = 1.7)
# 
# #dev.copy(postscript, "contplot.eps")
# #dev.off()
# 
# par(mfrow = c(2, 2), mar = c(4.5, 4.5, 2, 2), 
#     cex.axis = 1.6, cex.lab = 1.6)
# plot(bpJ0, eq = 1, seWithMean = TRUE, scale = 0, shade = TRUE, 
#      pages = 1, jit = TRUE)
# 
# #dev.copy(postscript, "spline1.eps")
# #dev.off() 
# 
# par(mfrow = c(2, 2), mar = c(4.5, 4.5, 2, 2), 
#     cex.axis = 1.6, cex.lab = 1.6)
# plot(bpJ0, eq = 2, seWithMean = TRUE, scale = 0, shade = TRUE, 
#      pages = 1, jit = TRUE)
# 
# #dev.copy(postscript, "spline2.eps")
# #dev.off() 
# 
# set.seed(1)
# AT(bpJ0, nm.end = "private", hd.plot = TRUE, cex.axis = 1.5, 
#    cex.lab = 1.5, cex.main = 1.6)
# 
# #dev.copy(postscript, "hd.plotAT.eps")
# #dev.off()
# 
# AT(bpJ0, nm.end = "private", type = "univariate")
# 
# AT(bpJ0, nm.end = "private", type = "naive")
# 
# ## End(Not run)

#

Run the code above in your browser using DataLab