###################################################
###################################################
library("SemiParBIVProbit")
data("meps", package = "SemiParBIVProbit")
###################################################
# Bivariate brobit models with endogenous treatment
###################################################
treat.eq <- private ~ s(bmi) + s(income) + s(age) + s(education) +
as.factor(health) + as.factor(race) +
as.factor(limitation) + as.factor(region) +
gender + hypertension + hyperlipidemia + diabetes
out.eq <- visits.hosp ~ private + s(bmi) + s(income) + s(age) +
s(education) + as.factor(health) +
as.factor(race) + as.factor(limitation) +
as.factor(region) + gender + hypertension +
hyperlipidemia + diabetes
f.list <- list(treat.eq, out.eq)
bpN <- SemiParBIVProbit(f.list, data = meps)
bpF <- SemiParBIVProbit(f.list, data = meps, BivD = "F")
bpC0 <- SemiParBIVProbit(f.list, data = meps, BivD = "C0")
bpC180 <- SemiParBIVProbit(f.list, data = meps, BivD = "C180")
bpJ0 <- SemiParBIVProbit(f.list, data = meps, BivD = "J0")
bpJ180 <- SemiParBIVProbit(f.list, data = meps, BivD = "J180")
bpG0 <- SemiParBIVProbit(f.list, data = meps, BivD = "G0")
bpG180 <- SemiParBIVProbit(f.list, data = meps, BivD = "G180")
conv.check(bpJ0)
AIC(bpN, bpF, bpC0, bpC180, bpJ0, bpJ180, bpG0, bpG180)
set.seed(1)
summary(bpJ0, cex.axis = 1.6,
cex.lab = 1.6, cex.main = 1.7)
#dev.copy(postscript, "contplot.eps")
#dev.off()
par(mfrow = c(2, 2), mar = c(4.5, 4.5, 2, 2),
cex.axis = 1.6, cex.lab = 1.6)
plot(bpJ0, eq = 1, seWithMean = TRUE, scale = 0, shade = TRUE,
pages = 1, jit = TRUE)
#dev.copy(postscript, "spline1.eps")
#dev.off()
par(mfrow = c(2, 2), mar = c(4.5, 4.5, 2, 2),
cex.axis = 1.6, cex.lab = 1.6)
plot(bpJ0, eq = 2, seWithMean = TRUE, scale = 0, shade = TRUE,
pages = 1, jit = TRUE)
#dev.copy(postscript, "spline2.eps")
#dev.off()
set.seed(1)
AT(bpJ0, nm.end = "private", hd.plot = TRUE, cex.axis = 1.5,
cex.lab = 1.5, cex.main = 1.6)
#dev.copy(postscript, "hd.plotAT.eps")
#dev.off()
AT(bpJ0, nm.end = "private", type = "univariate")
AT(bpJ0, nm.end = "private", type = "naive")
#
Run the code above in your browser using DataLab