Learn R Programming

SensoMineR (version 1.0)

afmult: Multiple Factor Analysis

Description

Performs a multiple factor analysis, using an object of class ktab.

Usage

afmult(X, option = c("lambda1", "inertia", "uniform", "internal"),
     coord = c(1,2), scannf = TRUE, nf = 3, cex = 0.8, 
     col = "steelblue4", font = 2, clabel = 0.8, scale.unit = TRUE)

Arguments

X
an object of class ktab
option
a string of characters for the weighting of arrays options: lambda1{weighting of group k by the inverse of the first eigenvalue of the k analysis} inertia{weighting of group k by the inverse of
coord
a length 2 vector specifying the components to plot
scannf
a logical value indicating whether the eigenvalues bar plot should be displayed
nf
if scannf FALSE, an integer indicating the number of kept axes
cex
cf. function par in the graphics package
col
cf. function par in the graphics package
font
cf. function par in the graphics package
clabel
cf. the ade4 package
scale.unit
a boolean, if TRUE (value set by default) then data are scaled to unit variance

Value

  • Returns a list including:
  • taba data frame with the modified array
  • ranka vector of ranks for the analyses
  • eiga numeric vector with the all eigenvalues
  • lia data frame with the coordinates of rows
  • TLa data frame with the factors associated to the rows (indicators of table)
  • coa data frame with the coordinates of columns
  • TCa data frame with the factors associated to the columns (indicators of table)
  • bloa vector indicating the number of variables for each table
  • lisupa data frame with the projections of normalized scores of rows for each table
  • linka data frame containing the projected inertia and the links between the arrays and the reference array

Details

The only difference between this function and the mfa programed by Daniel Chessel lies in the calculations of the coordinates of the partial individuals.

References

Escofier, B. and Pag�s, J. (1994) Multiple factor analysis (AFMULT package), Computational Statistics and Data Analysis, 18, 121--140.

Examples

Run this code
data(sensopanels)
resafmult<-afmult(ktab.data.frame(sensopanels, blocks = rep(14,7)),
    scannf = FALSE)

Run the code above in your browser using DataLab