Learn R Programming

SensoMineR (version 1.0)

mfasenso: Make MFA (or PCA) with illustrative individuals

Usage

mfasenso(ktab, ktab.illu = NULL, scale.unit = TRUE, nbcoord = 2, 
    poids = NULL)

Arguments

ktab
ktableau with active individuals
ktab.illu
ktableau with illustrative individuals
scale.unit
Boolean, TRUE if the variables are scaled to unit
nbcoord
number of coordinates
poids
vector of the weight of the variables (by default, all the variables hace the same weight)

Value

    Details

    Factor analysis is done. Two ktable are required, the first one concern the active individuals, the second one concerns the illustrative individuals. The outputs are the coordinates of the active and illustrative individuals (the mean points and the partial points if the method used is an MFA). If in the ktables, there is only one group of variable, then a PCA is done (else an MFA).

    References

    Escofier B., Pag�s J. (1988, 1990, 1993, 1998) Analyses factorielles simples et multiples. Objectifs m�thodes et interpr�tation. Dunod. Paris. Pag�s, J. & Husson, F. (2005) Multiple Factor Analysis with confidence ellipses: a useful methodology to study the relations between sensory and instrumental data. Journal of chemometrics.

    Examples

    Run this code
    ## PCA 
    data(chocolates)
    ktab.donnee <- ktab.data.frame(cbind.data.frame(chocolates[,1],
        chocolates[,4], chocolates[,-(1:4)]), blocks = c(2,14),
        tabnames = c("JP","Desc"))
    
    ## MFA 
    data(chocolates)
    ktab.donnee <- ktab.data.frame(cbind.data.frame(chocolates[,1],
        chocolates[,4], chocolates[,-(1:4)]), blocks = c(2,6,8),
        tabnames = c("JP","A-F","T-S"))

    Run the code above in your browser using DataLab