Learn R Programming

SensoMineR (version 1.0)

pca: Principal components analysis

Description

Performs a PCA and returns the individuals factor map and the variables factor map.

Usage

pca(df,supind=NULL,supvar=NULL,row.w=rep(1, nrow(df)-length(supind))/(nrow(df)-length(supind)),scale.unit=TRUE,coord=c(1,2),graph=TRUE,main.title=NULL,clabel=1,cex=0.7,font=1,csub = 1,col="black",lty=1)

Arguments

df
a data frame with n rows (individuals) and p columns (numeric variables)
supind
indexes of the illustrative individuals
supvar
indexes of the illustrative variables
row.w
an optional row weights (by default, uniform row weights)
scale.unit
a boolean, if TRUE (value set by default) then data are scaled to unit variance
coord
a length 2 vector specifying the components to plot
graph
boolean, if TRUE a graph is displayed
main.title
the title of the graph
clabel
if not NULL, a character size for the labels, used with par("cex")*clabel
cex
cf. function par in the graphics package
font
cf. function par in the graphics package
csub
a character size for the legend, used with par("cex")*csub
col
color of the variables
lty
line type of the arrows

Value

  • Returns a list including:
  • eiga numeric vector with the all eigenvalues
  • lia matrix with the coordinates of rows
  • coa matrix with the coordinates of columns
  • lisupa matrix with the coordinates of illustrative rows
  • cosupa matrix with the coordinates of illustrative columns
  • Returns the individuals factor map and the variables factor map.

Examples

Run this code
data(chocolates)
resaverage<-averagetable(chocolates,formul="~Product+Panelist",firstvar=5)
pca(resaverage,scale.unit=TRUE)

Run the code above in your browser using DataLab