# using "sr" class:
ope <- 253
df <- ope * 6
xv <- rnorm(df, 1 / sqrt(ope))
mysr <- as.sr(xv,ope=ope)
confint(mysr,level=0.90)
# using "lm" class
yv <- xv + rnorm(length(xv))
amod <- lm(yv ~ xv)
mysr <- as.sr(amod,ope=ope)
confint(mysr,level.lo=0.05,level.hi=1.0)
# rolling your own.
ope <- 253
df <- ope * 6
zeta <- 1.0
rvs <- rsr(128, df, zeta, ope)
roll.own <- sr(sr=rvs,df=df,c0=0,ope=ope)
aci <- confint(roll.own,level=0.95)
coverage <- 1 - mean((zeta < aci[,1]) | (aci[,2] < zeta))
# using "sropt" class
ope <- 253
df1 <- 4
df2 <- ope * 3
rvs <- as.matrix(rnorm(df1*df2),ncol=df1)
sro <- as.sropt(rvs,ope=ope)
aci <- confint(sro)
# on sropt, rolling your own.
zeta.s <- 1.0
rvs <- rsropt(128, df1, df2, zeta.s, ope)
roll.own <- sropt(z.s=rvs,df1,df2,drag=0,ope=ope)
aci <- confint(roll.own,level=0.95)
coverage <- 1 - mean((zeta.s < aci[,1]) | (aci[,2] < zeta.s))Run the code above in your browser using DataLab