# binary dataset
dataBin <- dataMedical[, 1:100]
# ordinal dataset
dataOrd <- dataMedicalgraded[, 1:100]
# DDplot of binary dataset
DDplot(dataBin)
if (FALSE) {
# DDplot of binary dataset without threshold
DDplot(dataBin, thr = NULL)
# compared to DDplot using ordinal dataset and 'bin = TRUE'
DDplot(dataOrd, bin = TRUE)
# compared to binarized dataset using bin = TRUE and cut-score equal to 3
DDplot(dataOrd, bin = TRUE, cutscore = 3)
# DDplot of binary data using generalized ULI
# discrimination based on 5 groups, comparing 4th and 5th
# threshold lowered to 0.1
DDplot(dataBin, k = 5, l = 4, u = 5, thr = 0.1)
# DDplot of ordinal dataset using ULI
DDplot(dataOrd)
# DDplot of ordinal dataset using generalized ULI
# discrimination based on 5 groups, comparing 4th and 5th
# threshold lowered to 0.1
DDplot(dataOrd, k = 5, l = 4, u = 5, thr = 0.1)
# DDplot of ordinal dataset using RIT
DDplot(dataOrd, discrim = "RIT")
# DDplot of ordinal dataset using RIR
DDplot(dataOrd, discrim = "RIR")
# DDplot of ordinal dataset displaying only difficulty
DDplot(dataBin, discrim = "none")
# DDplot of ordinal dataset displaying difficulty estimates
DDplot(dataOrd)
# DDplot of ordinal dataset displaying average item scores
DDplot(dataOrd, average.score = TRUE)
# item difficulty / criterion validity plot for data with criterion
data(GMAT, package = "difNLR")
DDplot(GMAT[, 1:20], criterion = GMAT$criterion, val_type = "simple")
}
Run the code above in your browser using DataLab