# loading data
data(GMAT, GMATtest, GMATkey, package = "difNLR")
matching <- scale(rowSums(GMAT[, 1:20])) # Z-score
# multinomial model for item 1
fit <- nnet::multinom(relevel(GMATtest[, 1], ref = paste(GMATkey[1])) ~ matching)
# plotting category probabilities
plotMultinomial(fit, matching, matching.name = "Z-score")
Run the code above in your browser using DataLab