powered by
Run term frequency inverse document frequency (TF-IDF) normalization on a matrix.
RunTFIDF(object, ...)# S3 method for default RunTFIDF( object, assay = NULL, method = 1, scale.factor = 10000, idf = NULL, verbose = TRUE, ... )# S3 method for Assay RunTFIDF( object, assay = NULL, method = 1, scale.factor = 10000, idf = NULL, verbose = TRUE, ... )# S3 method for Seurat RunTFIDF( object, assay = NULL, method = 1, scale.factor = 10000, idf = NULL, verbose = TRUE, ... )
# S3 method for default RunTFIDF( object, assay = NULL, method = 1, scale.factor = 10000, idf = NULL, verbose = TRUE, ... )
# S3 method for Assay RunTFIDF( object, assay = NULL, method = 1, scale.factor = 10000, idf = NULL, verbose = TRUE, ... )
# S3 method for Seurat RunTFIDF( object, assay = NULL, method = 1, scale.factor = 10000, idf = NULL, verbose = TRUE, ... )
A Seurat object
Arguments passed to other methods
Name of assay to use
Which TF-IDF implementation to use. Choice of:
1: The TF-IDF implementation used by Stuart & Butler et al. 2019 (10.1101/460147). This computes \(\log(TF \times IDF)\).
2: The TF-IDF implementation used by Cusanovich & Hill et al. 2018 (10.1016/j.cell.2018.06.052). This computes \(TF \times (\log(IDF))\).
3: The log-TF method used by Andrew Hill. This computes \(\log(TF) \times \log(IDF)\).
4: The 10x Genomics method (no TF normalization). This computes \(IDF\).
Which scale factor to use. Default is 10000.
A precomputed IDF vector to use. If NULL, compute based on the input data matrix.
Print progress
Returns a Seurat object
Seurat
Four different TF-IDF methods are implemented. We recommend using method 1 (the default).
https://en.wikipedia.org/wiki/Latent_semantic_analysis#Latent_semantic_indexing
# NOT RUN { mat <- matrix(data = rbinom(n = 25, size = 5, prob = 0.2), nrow = 5) RunTFIDF(object = mat) RunTFIDF(atac_small[['peaks']]) RunTFIDF(object = atac_small) # }
Run the code above in your browser using DataLab