A process X satisfying : $$dX(t) = (0.5*sigma^2*(beta-(gamma*X(t))/sqrt(theta^2+(X(t)-mu)^2))*dt + dW(t)$$
With (0.5*sigma^2*(beta-(gamma*X(t))/sqrt(theta^2+(X(t)-mu)^2)):drift coefficient and sigma :diffusion coefficient, W(t) is Wiener process, discretization dt = (T-t0)/N.
The parameters gamma > 0 and 0 <= abs(beta)="" <="" gamma<="" code=""> determine the shape of the distribution, and theta >= 0, and mu are, respectively, the scale and location parameters of the distribution.
Constraints: gamma > 0 , 0 <= abs(beta)="" <="" gamma<="" code=""> , theta >= 0 , sigma > 0.=>=>
See Also
Hyproc Hyperbolic Process, CIRhy modified CIR and hyperbolic Process, snssde Simulation Numerical Solution of SDE.