
Last chance! 50% off unlimited learning
Sale ends in
PEBS(X, delta, starts = list(theta= 1, sigma= 1), leve = 0.95)
p(t,.|x)
is log-normal
with mean = x * exp(theta*t)
and variance = x^2 * exp(2*theta*t)*(exp(sigma^2 *t ) -1 )
.
R
has the [dqpr]lnorm
functions to evaluate the density, the quantiles, and the cumulative distribution or generate pseudo random numbers from the lognormal distribution.PEABM
Parametric Estimation of Arithmetic Brownian Motion, PEOU
Parametric Estimation of Ornstein-Uhlenbeck Model, PEOUexp
Explicit Estimators of Ornstein-Uhlenbeck Model, PEOUG
Parametric Estimation of Hull-White/Vasicek Models.## Parametric estimation of model Black-Scholes.
## t0 = 0 ,T = 1
data(DATA2)
res <- PEBS(DATA2,delta=0.001,starts=list(theta=2,sigma=1))
res
GBMF(N=1000,M=10,T=1,t0=0,x0=DATA2[1],theta=res$coef[1],sigma=res$coef[2])
points(seq(0,1,length=length(DATA2)),DATA2,type="l",lwd=3,col="red")
Run the code above in your browser using DataLab