Sim.DiffProc-package: Simulation of Diffusion Processes.
Description
Simulation of diffusion processes and numerical solution
of stochastic differential equations. Analysis of discrete-time
approximations for stochastic differential equations (SDE)
driven by Wiener processes,in financial and actuarial modeling
and other areas of application for example modelling and
simulation of dispersion in shallow water using the attractive
center (K.BOUKHETALA, 1996). Approximated the evolution of conditional
law a diffusion process with three methods Euler, Kessler and Shoji-Ozaki.
Simulation and statistical analysis of the first passage time (FPT) and M-samples of the random
variable X(v) given by a simulated diffusion process.Details
ll{
Package: Sim.DiffProc
Type: Package
Version: 2.1
Date: 2011-11-18
License: GPL (>= 2)
LazyLoad: yes
}References
- Franck Jedrzejewski. Modeles aleatoires et physique probabiliste, Springer, 2009.
- Boukhetala K. Application des Processus de Diffusion, Echantillonnage Optimal. Ph.D. thesis, University of Science and Technology Houari Boumediene, BP 32 El-Alia, U.S.T.H.B, Algeria. 1998
- K.Boukhetala, Estimation of the first passage time distribution for a simulated diffusion process, Maghreb Math.Rev, Vol.7, No 1, Jun 1998, pp. 1-25.
- K.Boukhetala, Simulation study of a dispersion about an attractive centre. In proceedings of 11th Symposium Computational Statistics, edited by R.Dutter and W.Grossman, Wien , Austria, 1994, pp. 128-130.
- K.Boukhetala,Modelling and simulation of a dispersion pollutant with attractive centre, Edited by Computational Mechanics Publications, Southampton ,U.K and Computational Mechanics Inc, Boston, USA, pp. 245-252.
- K.Boukhetala, Kernel density of the exit time in a simulated diffusion, les Annales Maghrebines De L ingenieur, Vol , 12, N Hors Serie. Novembre 1998, Tome II, pp 587-589.
- T. Rolski, H. Schmidli, V. Schmidt and J. Teugels, Stochastic Processes for Insurance and Finance,John Wiley & Sons, 1998.
- Fima C Klebaner. Introduction to stochastic calculus with application (Second Edition), Imperial College Press (ICP), 2005.
- Lawrence C.Evans. An introduction to stochastic differential equations (Version 1.2), Department of Mathematics (UC BERKELEY).
- Hui-Hsiung Kuo. Introduction to stochastic integration, Springer, 2006.
- E.Allen. Modeling with Ito stochastic differential equations, Springer, 2007.
- Peter E.Kloeden, Eckhard Platen, Numerical solution of stochastic differential equations, Springer, 1995.
- Douglas Henderson, Peter Plaschko, Stochastic differential equations in science and engineering,World Scientific, 2006.
- A.Greiner, W.Strittmatter,and J.Honerkamp, Numerical Integration of Stochastic Differential Equations, Journal of Statistical Physics, Vol. 51, Nos. 1/2, 1988.
- Saito Y, Mitsui T. Simulation of Stochastic Differential Equations. The Annals of the Institute of Statistical Mathematics, 3, pp. 419-432, 1993
- Racicot F E, Theoret R, Finance computationnelle et gestion des risques, Presses de universite du Quebec, 2006.
- Avner Friedman, Stochastic differential equations and applications, Volume 1, ACADEMIC PRESS, 1975.
- Heinz S. Mathematical Modeling. Stochastic Evolution, pp. 295-334, Springer-Verlag, Berlin Heidelberg. ISBN 978-3-642-20310-7 2011.
- Ito K. Stochastic integral Tokyo. Proc. Jap. Acad, 20, pp. 519-529, 1944.