Learn R Programming

Sim.DiffProc (version 2.5)

BMStraP: Stratonovitch Integral [3]

Description

Simulation of the Stratonovitch integral(W(s)^n o dW(s),0,t).

Usage

BMStraP(N, T, power, output = FALSE)

Arguments

N
size of process.
T
final time.
power
constant.
output
if output = TRUE write a output to an Excel (.csv).

Value

  • data frame(time,Stra) and plot of the Stratonovitch integral.

Details

Stratonovitch integral as defined : $$integral(f(t) o dW(s),0,t) = lim(sum(0.5*(f(t[i])+f(t[i+1]))*(W(t[i+1])-W(t[i]))))$$ calculus for Stratonovitch integral with w(0) = 0: $$integral(W(s)^n o dW(s),0,t) = lim(sum(0.5*(W(t[i])^(n-1)+W(t[i+1])^(n-1))*(W(t[i+1])^2 - W(t[i])^2)))$$ The discretization dt = T/N, and W(t) is Wiener process.

See Also

BMStra Stratonovitch Integral [1], BMStraC Stratonovitch Integral [2], BMStraT Stratonovitch Integral [4].

Examples

Run this code
BMStraP(N=1000, T=1, power = 2,output = FALSE)

Run the code above in your browser using DataLab