Simulation of the Stratonovitch integral(W(s)^n o dW(s),0,t).
Usage
BMStraP(N, T, power, output = FALSE)
Arguments
N
size of process.
T
final time.
power
constant.
output
if output = TRUE write a output to an Excel (.csv).
Value
data frame(time,Stra) and plot of the Stratonovitch integral.
Details
Stratonovitch integral as defined : $$integral(f(t) o dW(s),0,t) = lim(sum(0.5*(f(t[i])+f(t[i+1]))*(W(t[i+1])-W(t[i]))))$$
calculus for Stratonovitch integral with w(0) = 0: $$integral(W(s)^n o dW(s),0,t) = lim(sum(0.5*(W(t[i])^(n-1)+W(t[i+1])^(n-1))*(W(t[i+1])^2 - W(t[i])^2)))$$
The discretization dt = T/N, and W(t) is Wiener process.
See Also
BMStra Stratonovitch Integral [1], BMStraC Stratonovitch Integral [2], BMStraT Stratonovitch Integral [4].