RadialP3D_1(N, t0, Dt, T = 1, X0, Y0, Z0, v, K, Sigma,
Output = FALSE)discretization).X(t) at time t0.Y(t) at time t0.Z(t) at time t0.0 < v < sqrt(X0^2 + Y0 ^2 + Z0^2)K > 0.Sigma > 0.Output = TRUE write a Output to an Excel (.csv).dW1(t), dW2(t) and dW3(t) are brownian motions independent.
If S = 1 (ie M(S=1,Sigma)) the system SDE is :
$$dX(t) = (-K * X(t)/(X(t)^2 + Y(t)^2 + Z(t)^2) )* dt + Sigma* dW1(t)$$
$$dY(t) = (-K * Y(t)/(X(t)^2 + Y(t)^2 + Z(t)^2) )* dt + Sigma* dW2(t)$$
$$dZ(t) = (-K * Z(t)/(X(t)^2 + Y(t)^2 + Z(t)^2) )* dt + Sigma* dW3(t)$$
For more detail consulted References.RadialP3D_2.RadialP3D_1(N=1000, t0=0, Dt=0.001, T = 1, X0=1, Y0=0.5, Z0=0.5,
v=0.2, K=3, Sigma=0.2, Output = FALSE)Run the code above in your browser using DataLab