Learn R Programming

Sim.DiffProc (version 2.6)

fptsde3d: First Passage Time in 3-Dim SDE

Description

The (S3) generic function fptsde3d for simulate first-passage-time (f.p.t) in 3-dim stochastic differential equations.

Usage

fptsde3d(N, ...)
## S3 method for class 'default':
fptsde3d(N = 100, M = 10, x0 = 0, y0 = 0, z0 = 0, t0 = 0, T = 1, Dt, c = 0.5, 
   driftx, diffx, drifty, diffy, driftz, diffz, alpha = 0.5, mu = 0.5, 
   type = c("ito", "str"), method = c("euler", "milstein", "predcorr", 
   "smilstein", "taylor", "heun", "rk1", "rk2", "rk3"), ...)
						   
						   
## S3 method for class 'fptsde3d':
summary(object, \dots)	
## S3 method for class 'fptsde3d':
mean(x, \dots)
## S3 method for class 'fptsde3d':
median(x, \dots)
## S3 method for class 'fptsde3d':
quantile(x, \dots)
## S3 method for class 'fptsde3d':
kurtosis(x, \dots)
## S3 method for class 'fptsde3d':
skewness(x, \dots)
## S3 method for class 'fptsde3d':
moment(x, order = 2, \dots)
## S3 method for class 'fptsde3d':
bconfint(x, level=0.95, \dots)

Arguments

N
size of sde.
M
size of fpt.
x0
initial value of the process $X_{t}$ at time t0.
y0
initial value of the process $Y_{t}$ at time t0.
z0
initial value of the process $Z_{t}$ at time t0.
t0
initial time.
T
final time.
Dt
time step of the simulation (discretization). If it is missing a default $\Delta t = \frac{T-t_{0}}{N}$.
c
boundary or barrier (threshold).
driftx
drift coefficient: an expression of four variables t, x, y and z for process $X_t$.
diffx
diffusion coefficient: an expression of four variables t, x, y and z for process $X_t$.
drifty
drift coefficient: an expression of four variables t, x, y and z for process $Y_t$.
diffy
diffusion coefficient: an expression of four variables t, x, y and z for process $Y_t$.
driftz
drift coefficient: an expression of four variables t, x, y and z for process $Z_t$.
diffz
diffusion coefficient: an expression of four variables t, x, y and z for process $Z_t$.
alpha
weight alpha of the predictor-corrector scheme; the default alpha = 0.5.
mu
weight mu of the predictor-corrector scheme; the default mu = 0.5.
type
sde of the type Ito or Stratonovich.
method
numerical methods of simulation, the default method = "euler"; see snssde3d.
x, object
an object inheriting from class "fptsde3d".
order
order of moment.
level
the confidence level required.
...
further arguments for (non-default) methods.

Value

  • fptsde3d returns an object inheriting from class "fptsde3d".
  • tau_x, tau_y, tau_za vector of triplet 'fpt' $(\tau_{c}(x),\tau_{c}(y),\tau_{c}(z))$.

newcommand

\CRANpkg

href

http://CRAN.R-project.org/package=#1

pkg

#1

Details

The function fptsde3d returns a random variables $\tau_{c}(x)$, $\tau_{c}(y)$ and $\tau_{c}(z)$ "first passage time" for $(X(t),Y(t),Z(t))$, defined by : $$\tau_{c}(x) = { t \geq 0 ; X_{t} \geq c },\quad if \quad (x_{0} < c)$$ $$\tau_{c}(y) = { t \geq 0 ; Y_{t} \geq c },\quad if \quad (y_{0} < c)$$ $$\tau_{c}(z) = { t \geq 0 ; Z_{t} \geq c },\quad if \quad (z_{0} < c)$$ and $$\tau_{c}(x) = { t \geq 0 ; X_{t} \leq c },\quad if \quad (x_{0} > c)$$ $$\tau_{c}(y) = { t \geq 0 ; Y_{t} \leq c },\quad if \quad (y_{0} > c)$$ $$\tau_{c}(z) = { t \geq 0 ; Z_{t} \leq c },\quad if \quad (z_{0} > c)$$ with $c$ is a fixed boundary or barrier.

References

Argyrakisa, P. and G.H. Weiss (2006). A first-passage time problem for many random walkers. Physica A. 363, 343--347. Aytug H., G. J. Koehler (2000). New stopping criterion for genetic algorithms. European Journal of Operational Research, 126, 662--674. Boukhetala, K. (1996) Modelling and simulation of a dispersion pollutant with attractive centre. ed by Computational Mechanics Publications, Southampton ,U.K and Computational Mechanics Inc, Boston, USA, 245--252. Boukhetala, K. (1998a). Estimation of the first passage time distribution for a simulated diffusion process. Maghreb Math.Rev, 7(1), 1--25. Boukhetala, K. (1998b). Kernel density of the exit time in a simulated diffusion. les Annales Maghrebines De L ingenieur, 12, 587--589. Ding, M. and G. Rangarajan. (2004). First Passage Time Problem: A Fokker-Planck Approach. New Directions in Statistical Physics. ed by L. T. Wille. Springer. 31--46. Roman, R.P., Serrano, J. J., Torres, F. (2008). First-passage-time location function: Application to determine first-passage-time densities in diffusion processes. Computational Statistics and Data Analysis. 52, 4132--4146. Roman, R.P., Serrano, J. J., Torres, F. (2012). An R package for an efficient approximation of first-passage-time densities for diffusion processes based on the FPTL function. Applied Mathematics and Computation, 218, 8408--8428. Roman, R.P., Serrano, J. J., Torres, F. (2013). fptdApprox: Approximation of first-passage-time densities for diffusion processes. Rpackage version 2.0. Gardiner, C. W. (1997). Handbook of Stochastic Methods. Springer-Verlag, New York.

See Also

fptsde1d for simulation fpt in sde 1-dim. FPTL in package fptdApprox for computes values of the first passage time location.

Examples

Run this code
## Example :
## dX(t) = W2(t) dt + W3(t) * dW1(t) 
## dY(t) = dW2(t) and dZ(t) = dW3(t)        
## x0 = y0 = = z0 = 0, and barrier c = 0.5.
## W1(t), W2(t) and W3(t) three independent Brownian motion

fx <- expression(y)
gx <- expression(z)
fy <- expression(0)
gy <- expression(1)
fz <- expression(0)
gz <- expression(1)

res3 <- fptsde3d(driftx=fx,diffx=gx,drifty=fy,diffy=gy,driftz=fz,diffz=gz,N=1000,M=50,c=0.5)
res3
summary(res3)
bconfint(res3,level=0.95)
moment(res3,order=c(2,3,4,5))
X <- cbind(res3$tau_x,res3$tau_y,res3$tau_z)
## library(sm)
## sm.density(X,display="rgl")

Run the code above in your browser using DataLab