## See Example 3.5 in the Vignette.
set.seed(123)
sample_size <- 5000
cluster_size <- 4
beta_intercepts <- 0
beta_coefficients <- 0.2
latent_correlation_matrix <- toeplitz(c(1, 0.9, 0.9, 0.9))
x <- rep(rnorm(sample_size), each = cluster_size)
simulated_binary_dataset <- rbin(clsize = cluster_size,
intercepts = beta_intercepts, betas = beta_coefficients,
xformula = ~x, cor.matrix = latent_correlation_matrix, link = "probit")
library(gee)
binary_gee_model <- gee(y ~ x, family = binomial("probit"), id = id,
data = simulated_binary_dataset$simdata)
summary(binary_gee_model)$coefficients
## See Example 3.6 in the Vignette.
set.seed(8)
library(evd)
simulated_latent_variables1 <- rmvevd(sample_size, dep = sqrt(1 - 0.9),
model = "log", d = cluster_size)
simulated_latent_variables2 <- rmvevd(sample_size, dep = sqrt(1 - 0.9),
model = "log", d = cluster_size)
simulated_latent_variables <- simulated_latent_variables1 -
simulated_latent_variables2
simulated_binary_dataset <- rbin(clsize = cluster_size,
intercepts = beta_intercepts, betas = beta_coefficients,
xformula = ~x, rlatent = simulated_latent_variables)
binary_gee_model <- gee(y ~ x, family = binomial("logit"), id = id,
data = simulated_binary_dataset$simdata)
summary(binary_gee_model)$coefficients
Run the code above in your browser using DataLab